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Objectives & Motivations

Objectives & Motivations

Discussion on
I the applicability of Newmark based schemes for nonsmooth dynamics

I position level constraints
I velocity level constraints and impact law

I impact in flexible structures
I jump in velocity or standard impact ?
I coefficient of restitution in flexible structure.
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Background

Problem setting

NonSmooth Multibody Systems

Scleronomous holonomic perfect unilateral constraints and joints



M(q(t))v̇ = F (t, q(t), v(t)) + T T (t, q)G(q(t))λ(t), a.e

q̇(t) = T (t, q)v(t),

gk (q(t)) = 0, λk (t), k ∈ I

0 6 gk (q(t)) ⊥ λk (t) > 0, k ∈ E

ġ(q(t)) = G T (q(t))T (t, q)v(t),

ġ+
k = −eġ−k , if gk (q(t)) = 0, k ∈ E

(1)

where G(q) = ∇g(q) and e is the coefficient of restitution.
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Background

Problem setting

NonSmooth Multibody Systems

Scleronomous holonomic perfect unilateral constraints



M(q(t))v̇ = F (t, q(t), v(t)) + G(q(t))λ(t), a.e

q̇(t) = v(t),

g(t) = g(q(t)), ġ(t) = G T (q(t))v(t),

0 6 g(t) ⊥ λ(t) > 0,

ġ+(t) = −eġ−(t),

(2)

where G(q) = ∇g(q) and e is the coefficient of restitution.
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Background

Problem setting

Mechanical systems with contact, impact and friction
Simulation of Circuit breakers (INRIA/Schneider Electric)
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Background

Problem setting

Mechanical systems with contact, impact and friction
Simulation of the ExoMars Rover (INRIA/Trasys Space/ESA)

Background – 6/57



Time-integration of flexible multi-body systems with contact. Newmark based schemes and the coefficient of restitution

Background

Problem setting

Mechanical systems with contact, impact and friction

Simulation of wind turbines (DYNAWIND project)
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Background

State–of–the–art

State–of–the–art

Numerical time–integration methods for Nonsmooth Multibody systems (NSMBS):

Nonsmooth event capturing methods (Time–stepping methods)

� robust, stable and proof of convergence

� low kinematic level for the constraints

� able to deal with finite accumulation

� very low order of accuracy even in free flight motions

Two main implementations

I Moreau–Jean time–stepping scheme

I Schatzman–Paoli time–stepping scheme

Background – 7/57



Time-integration of flexible multi-body systems with contact. Newmark based schemes and the coefficient of restitution

Background

State–of–the–art

Moreau’s Time stepping scheme (Moreau, 1988 ; Jean, 1999)

Principle



M(qk+θ)(vk+1 − vk )− hFk+θ = pk+1 = G(qk+θ)Pk+1, (3a)

qk+1 = qk + hvk+θ, (3b)

Uk+1 = G T (qk+θ) vk+1 (3c)

0 6 Uαk+1 + eUαk ⊥ Pαk+1 > 0 if ḡαk,γ 6 0

Pαk+1 = 0 otherwise
. (3d)

with

I θ ∈ [0, 1]

I xk+θ = (1− θ)xk+1 + θxk

I Fk+θ = F (tkθ, qk+θ, vk+θ)

I ḡk,γ = gk + γhUk , , γ > 0 is a prediction of the constraints.

Background – 8/57



Time-integration of flexible multi-body systems with contact. Newmark based schemes and the coefficient of restitution

Background

State–of–the–art

Schatzman’s Time stepping scheme (Paoli and Schatzman, 2002)

Principle



M(qk+1)(qk+1 − 2qk + qk−1)− h2Fk+θ = pk+1, (4a)

vk+1 =
qk+1 − qk−1

2h
, (4b)

−pk+1 ∈ NK

(
qk+1 + eqk−1

1 + e

)
, (4c)

where NK defined the normal cone to K .
For K = {q ∈ IRn, y = g(q) > 0}

0 6 g

(
qk+1 + eqk−1

1 + e

)
⊥ ∇g

(
qk+1 + eqk−1

1 + e

)
Pk+1 > 0 (5)
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Background

State–of–the–art

Comparison

Shared mathematical properties

I Convergence results for one constraints

I Convergence results for multiple constraints problems with acute kinetic angles

I No theoretical proof of order

Mechanical properties

I Position vs. velocity constraints

I Respect of the impact law in one step (Moreau) vs. Two-steps(Schatzman)

I Linearized constraints rather than nonlinear.

But
Both schemes do not are quite inaccurate and “dissipate” a lot of energy of vibrations.
This is a consequence of the first order approximation of the smooth forces term F
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Newmark’s scheme and the α–methods family

Newmark’s scheme.

The Newmark scheme

Linear Time “Invariant”Dynamics without contact

{
Mv̇(t) + Kq(t) + Cv(t) = f (t)

q̇(t) = v(t)
(6)
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Newmark’s scheme and the α–methods family

Newmark’s scheme.

The Newmark scheme (Newmark, 1959)

Principle
Given two parameters γ and β

Mak+1 = fk+1 − Kqk+1 − Cvk+1

vk+1 = vk + hak+γ

qk+1 = qk + hvk +
h2

2
ak+2β

(7)

Notations

f (tk+1) = fk+1, xk+1 ≈ x(tk+1),

xk+γ = (1− γ)xk + γxk+1

(8)
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Newmark’s scheme and the α–methods family

Newmark’s scheme.

The Newmark scheme

Implementation
Let us consider the following explicit prediction{

v∗k = vk + h(1− γ)ak

q∗k = qk + hvk + 1
2

(1− 2β)h2ak
(9)

The Newmark scheme may be written as
ak+1 = M̂−1(−Kq∗k − Cv∗k + fk+1)

vk+1 = v∗k + hγak+1

qk+1 = q∗k + h2βak+1

(10)

with the iteration matrix
M̂ = M + h2βK + γhC (11)
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Newmark’s scheme and the α–methods family

Newmark’s scheme.

The Newmark scheme

Properties

I One–step method in state. (Two steps in position)

I Second order accuracy if and only if γ = 1
2

I Unconditional stability for 2β > γ > 1
2

Average acceleration
(Trapezoidal rule)

implicit γ = 1
2

and β = 1
4

central difference explicit γ = 1
2

and β = 0

linear acceleration implicit γ = 1
2

and β = 1
6

Fox–Goodwin
(Royal Road)

implicit γ = 1
2

and β = 1
12

Table: Standard value for Newmark scheme ((Hughes, 1987, p 493)Géradin and Rixen (1993))
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Newmark’s scheme and the α–methods family

Newmark’s scheme.

The Newmark scheme

High frequencies dissipation

I In flexible multibody Dynamics or in standard structural dynamics discretized by
FEM, high frequency oscillations are artifacts of the semi-discrete structures.

I In Newmark’s scheme, maximum high frequency damping is obtained with

γ �
1

2
, β =

1

4
(γ +

1

2
)2 (12)

example for γ = 0.9, β = 0.49

Newmark’s scheme and the α–methods family – 16/57



Time-integration of flexible multi-body systems with contact. Newmark based schemes and the coefficient of restitution

Newmark’s scheme and the α–methods family

Newmark’s scheme.

The Newmark scheme
From (Hughes, 1987) :
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Newmark’s scheme and the α–methods family

HHT scheme

The Hilber–Hughes–Taylor scheme. Hilber et al. (1977)

Objectives

I to introduce numerical damping without dropping the order to one.

Principle
Given three parameters γ, β and α and the notation

Mq̈k+1 = −(Kqk+1 + Cvk+1) + Fk+1 (13)
Mak+1 = Mq̈k+1+α = −(Kqk+1+α + Cvk+1+α) + Fk+1+α

vk+1 = vk + hak+γ

qk+1 = qk + hvk +
h2

2
ak+2β

(14)

Standard parameters (Hughes, 1987, p532) are

α ∈ [−1/3, 0], γ = (1− 2α/2) and β = (1− α)2/4 (15)

Warning
The notation are abusive. ak+1 is not the approximation of the acceleration at tk+1
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Newmark’s scheme and the α–methods family

HHT scheme

The HHT scheme

Properties

I Two–step method in state. (Three–steps method in position)

I Unconditional stability and second order accuracy with the previous rule. (15)

I For α = 0, we get the trapezoidal rule and the numerical dissipation increases
with |α|.
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Newmark’s scheme and the α–methods family

HHT scheme

The HHT scheme
From (Hughes, 1987) :
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Newmark’s scheme and the α–methods family

Generalized α-methods

Generalized α-methods (Chung and Hulbert, 1993)

Principle
Given three parameters γ, β, αm and αf and the notation

Mq̈k+1 = −(Kqk+1 + Cvk+1) + Fk+1 (16)
Mak+1−αm = Mq̈k+1−αf

vk+1 = vk + hak+γ

qk+1 = qk + hvk +
h2

2
ak+2β

(17)

Standard parameters (Chung and Hulbert, 1993) are chosen as

αm =
2ρ∞ − 1

ρ∞ + 1
, αf =

ρ∞

ρ∞ + 1
, γ =

1

2
+ αf − αm and β =

1

4
(γ +

1

2
)2 (18)

where ρ∞ ∈ [0, 1] is the spectral radius of the algorithm at infinity.

Properties

I Two–step method in state.

I Unconditional stability and second order accuracy.

I Optimal combination of accuracy at low-frequency and numerical damping at
high-frequency. Newmark’s scheme and the α–methods family – 21/57
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Newmark’s scheme and the α–methods family

Generalized α-methods
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Nonsmooth Newmark’s scheme

A first naive approach
Direct Application of the HHT scheme to Linear Time
“Invariant”Dynamics with contact



Mv̇(t) + Kq(t) + Cv(t) = f (t) + r(t), a.e

q̇(t) = v(t)

r(t) = G(q)λ(t)

g(t) = g(q(t)), ġ(t) = G T (q(t))v(t),

0 6 g(t) ⊥ λ(t) > 0,

(19)

results in {
Mq̈k+1 = −(Kqk+1 + Cvk+1) + Fk+1 + rk+1

rk+1 = Gk+1λk+1
(20)



Mak+1 = Mq̈k+1+α

vk+1 = vk + hak+γ

qk+1 = qk + hvk +
h2

2
ak+2β

0 6 gk+1 ⊥ λk+1 > 0,

(21)
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Nonsmooth Newmark’s scheme

A first naive approach

Direct Application of the HHT scheme to Linear Time
“Invariant”Dynamics with contact
The scheme is not consistent for mainly two reasons:

I If an impact occur between rigid bodies, or if a restitution law is needed which is
mandatory between semidiscrete structure, the impact law is not taken into
account by the discrete constraint at position level

I Even if the constraint is discretized at the velocity level, i.e.

if ḡk+1, then 0 6 ġk+1 + egk ⊥ λk+1 > 0 (22)

the scheme is consistent only for γ = 1 and α = 0 (first order approximation.)
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Nonsmooth Newmark’s scheme

A first naive approach

Velocity based constraints with standard Newmark scheme (α = 0.0)
Bouncing ball example. m = 1, g = 9.81, x0 = 1.0 v0 = 0.0, e = 0.9

h = 0.001, γ = 1.0, β = γ/2 h = 0.001, γ = 1/2, β = γ/2
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Nonsmooth Newmark’s scheme

A first naive approach

Position based constraints with standard Newmark scheme (α = 0.0)
Bouncing ball example. m = 1, g = 9.81, v0 = 0.0, e = 0.9, h = 0.001, γ = 1.0,
β = γ/2

x0 = 1.0 x0 = 1.01
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Nonsmooth Newmark’s scheme

The Nonsmooth Newmark and HHT scheme

Dynamics with contact and (possibly) impact



M dv = F (t, q, v) dt + G(q) di

q̇(t) = v+(t),

g(t) = g(q(t)), ġ(t) = G T (q(t))v(t),

if g(t) 6 0, 0 6 g+(t) + eġ−(t) ⊥ di > 0,

(23)
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Nonsmooth Newmark’s scheme

The Nonsmooth Newmark and HHT scheme

Splitting the dynamics between smooth and nonsmooth part

M dv = Ma(t) dt + M dv con (24)

with {
Ma dt = F (t, q, v) dt

M dv con = G(q) di
(25)

Different choices for the discrete approximation of the term Ma dt and M dv con
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Nonsmooth Newmark’s scheme

The Nonsmooth Newmark and HHT scheme

Principles

I As usual is the Newmark scheme, the smooth part of the dynamics
Ma dt = F (t, q, v) dt is collocated, i.e.

Mak+1 = Fk+1 (26)

I the impulsive part a first order approximation is done over the time–step

M∆v con
k+1 = Gk+1 Λk+1 (27)

Nonsmooth Newmark’s scheme – 29/57
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Nonsmooth Newmark’s scheme

The Nonsmooth Newmark and HHT scheme

Principles 

Mak+1 = Fk+1+α

M∆v con
k+1 = Gk+1 Λk+1

vk+1 = vk + hak+γ + ∆v con
k+1

qk+1 = qk + hvk +
h2

2
ak+2β +

1

2
h∆v con

k+1

(28)
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Nonsmooth Newmark’s scheme

The Nonsmooth Newmark and HHT scheme

Example (Two balls oscillator with impact)

m = 1kg

k = 103N/m

q2

q1

m = 1kg
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Nonsmooth Newmark’s scheme

The Nonsmooth Newmark and HHT scheme

time–step : h = 2e − 3. Moreau (θ = 1.0). Newmark (γ = 1.0, β = 0.5). HHT
(α = 0.1)
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Nonsmooth Newmark’s scheme

The Nonsmooth Newmark and HHT scheme
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Nonsmooth Newmark’s scheme

The Nonsmooth Newmark and HHT scheme

Observed properties on examples

I the scheme is consistent and globally of order one.

I the scheme seems to share the stability property as the original HHT

I the scheme dissipates energy only in high-frequency oscillations (w.r.t the
time–step.)

Conclusions

I Extension to α-scheme can be done in the same way.

I Extension to any multi–step schemes.

I Improvements of the order by splitting.

I Recast into time–discontinuous Galerkin formulation.
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Energy Analysis

Time–continuous energy balance equations

Energy analysis

Time–continuous energy balance equations
Let us start with the “LTI” Dynamics{

M dv + (Kq + Cv)dt = F dt + di

dq = v±dt
(29)

we get for the Energy Balance

d(v>Mv) + (v+ + v−)(Kq + Cv) dt = (v+ + v−)F dt + (v+ + v−)di (30)

that is

2dE := d(v>Mv) + 2q>Kdq = 2v>F dt − 2v>Cv dt + (v+ + v−)> di
(31)

with

E :=
1

2
v>Mv +

1

2
q>Kq. (32)
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Energy Analysis

Time–continuous energy balance equations

Energy analysis

Time–continuous energy balance equations

If we split the differential measure in di = λ dt +
∑

i piδti , we get

2dE = = 2v>(F + λ) dt − 2v>Cv dt + (v+ + v−)>piδti (33)

By integration over a time interval [t0, t0] such that ti ∈ [t0, t1], we obtain an energy
balance equation as

∆E := E(t1)− E(t0)

=

∫ t1

t0

v>F dt︸ ︷︷ ︸
W ext

−
∫ t1

t0

v>Cv dt︸ ︷︷ ︸
W damping

+

∫ t1

t0

v>λdt︸ ︷︷ ︸
W con

+
1

2

∑
i

(v+(ti ) + v−(ti ))>pi︸ ︷︷ ︸
W impact

(34)
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Energy Analysis

Time–continuous energy balance equations

Energy analysis

Work performed by the reaction impulse di

I The term

W con =

∫ t1

t0

v>λ dt (35)

is the work done by the contact forces within the time–step. If we consider
perfect unilateral constraints, we have W con = 0.

I The term

W impact =
1

2

∑
i

(v+(ti ) + v−(ti ))>pi (36)

represents the work done by the contact impulse pi at the time of impact ti .
Since pi = G(ti )Pi and if we consider the Newton impact law, we have

W impact =
1

2

∑
i (v+(ti ) + v−(ti ))>G(ti )Pi

=
1

2

∑
i (U+(ti ) + U−(ti ))>Pi

=
1

2

∑
i ((1− e)U−(ti ))>Pi 6 0 for 0 6 e 6 1

(37)

with the local relative velocity defines as U(t) = G>(t)v(t)
Energy Analysis – 38/57
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Energy Analysis

Energy analysis for Moreau–Jean scheme

Energy analysis for Moreau–Jean scheme

Lemma
Let us assume that the dynamics is a LTI dynamics with C = 0. Let us define the
discrete approximation of the work done by the external forces within the step (supply
rate) by

W̄ ext
k+1 = hv>k+θFk+θ ≈

∫ tk+1

tk

Fv dt (38)

Then the variation of energy over a time–step performed by the Moreau–Jean is

∆E − W̄ ext
k+1 = (

1

2
− θ)

[
‖vk+1 − vk‖2

M + ‖(qk+1 − qk )‖2
K

]
+ U>k+θPk+1 (39)
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Energy Analysis

Energy analysis for Moreau–Jean scheme

Energy analysis for Moreau–Jean scheme

Proposition
Let us assume that the dynamics is a LTI dynamics. The Moreau–Jean scheme
dissipates energy in the sense that

E(tk+1)− E(tk )− W̄ ext
k+1 6 0 (40)

if
1

2
6 θ 6

1

1 + e
6 1 (41)

In particular, for e = 0, we get
1

2
6 θ 6 1 and for e = 1, we get θ =

1

2
.
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Energy Analysis

Energy analysis for Moreau–Jean scheme

Energy analysis for Moreau–Jean scheme

Variant of the Moreau scheme that always dissipates energy
Let us consider the variant of the Moreau scheme

M(vk+1 − vk ) + hKqk+θ − hFk+θ = pk+1 = GPk+1, (42a)

qk+1 = qk + hvk+1/2, (42b)

Uk+1 = G> vk+1 (42c)

if ḡαk+1 6 0 then 0 6 Uαk+1 + eUαk ⊥ Pαk+1 > 0,

otherwise Pαk+1 = 0.
, α ∈ I (42d)
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Energy analysis for Moreau–Jean scheme

Lemma
Let us assume that the dynamics is a LTI dynamics with C = 0. Then the variation of
energy performed by the variant scheme over a time–step is

∆E − W̄ ext
k+1 = (

1

2
− θ)‖(qk+1 − qk )‖2

K + U>
k+1/2

Pk+1 (43)

The scheme dissipates energy in the sense that

E(tk+1)− E(tk )− W̄ ext
k+1 6 0 (44)

if

θ >
1

2
(45)
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Energy analysis for Newmark’s scheme

Lemma
Let us assume that the dynamics is a LTI dynamics given by (??) with C = 0. Let us
define the discrete approximation of the work done by the external forces within the
step by

W̄ ext
k+1 = (qk+1 − qk )>Fk+γ ≈

∫ tk+1

tk

Fv dt (46)

Then the variation of energy over a time–step performed by the scheme (??) is

∆E − W̄ ext
k+1 = (

1

2
− γ)‖(qk+1 − qk )‖2

K

+
h

2
(2β − γ)

[
(qk+1 − qk )>K(vk+1 − vk )− (vk+1 − vk )> [Fk+1 − Fk ]

]
+

1

2
P>k+1(Uk+1 + Uk ) +

h

2
(2β − γ)(ak+1 − ak )>GPk+1

(47)
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Energy analysis for Newmark’s scheme
Define an discrete “algorithmic energy” (discrete storage function) of the form

K(q, v , a) = E(q, v) +
h2

4
(2β − γ)a>Ma. (48)

The following result can be given

Proposition
Let us assume that the dynamics is a LTI dynamics given by (??) with C = 0. Let us
define the discrete approximation of the work done by the external forces within the
step by

W̄ ext
k+1 = (qk+1 − qk )>Fk+γ ≈

∫ tk+1

tk

Fv dt (49)

Then the variation of energy over a time–step performed by the nonsmooth Newmark
scheme (??) is

∆K− W̄ ext
k+1 = −(γ −

1

2
)

[
‖qk+1 − qk‖2

K +
h

2
(2β − γ)‖(ak+1 − ak )‖2

M

]
+ U>

k+1/2
Pk+1

(50)
Moreover, the nonsmooth Newmark scheme is stable in the following sense

∆K− W̄ ext
k+1 6 0 (51)

for

2β > γ >
1

2
(52)
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Energy analysis for HHT scheme

Augmented dynamics
Let us introduce the modified dynamics

Ma(t) + Cv(t) + Kq(t) = F (t) +
α

ν
[Kw(t) + Cx(t)− y(t)] (53)

and the following auxiliary dynamics that filter the previous one

νhẇ(t) + w(t) = νhq̇(t)
νhẋ(t) + x(t) = νhv̇(t)

νhẏ(t) + y(t) = νhḞ (t)
(54)
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Discretized Augmented dynamics
The equation (54) are discretized as follows

ν(wk+1 − wk ) +
1

2
(wk+1 + wk ) = ν(qk+1 − qk )

ν(xk+1 − xk ) +
1

2
(xk+1 + xk ) = ν(vk+1 − vk )

ν(yk+1 − yk ) +
1

2
(yk+1 + yk ) = ν(Fk+1 − Fk )

(55)

or rearranging the terms

(
1

2
+ ν)wk+1 + (

1

2
− ν)wk = ν(qk+1 − qk )

(
1

2
+ ν)xk+1 + (

1

2
− ν)xk = ν(vk+1 − vk )

(
1

2
+ ν)yk+1 + (

1

2
− ν)yk = ν(Fk+1 − Fk )

(56)

With the special choice ν =
1

2
, we obtain the HHT scheme collocation that is

Mak+1 + (1− α)[Kqk+1 + Cvk+1] + α[Kqk + Cvk ] = (1− α)Fk+1 + αFk (57)
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Discretized storage function
With

H(q, v , a,w) = E(q, v) +
h2

4
(2β − γ)a>Ma + 2α(1− γ)w>Kw . (58)

we get

2∆H = 2U>
k+1/2

Pk+1

− h2(γ −
1

2
)(2β − γ)‖(ak+1 − ak )‖2

M

− 2(γ −
1

2
− α)‖qk+1 − qk‖2

K

− 2α(1− 2(γ −
1

2
))‖wk+1 − wk‖2

K

+ 2(Fk+γ−α)>(qk+1 − qk ) + 2α(1− 2(γ −
1

2
))(qk+1 − qk )>(yk+1 − yk )
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Energy analysis for HHT scheme

Discretized storage function
With

H(q, v , a,w) = E(q, v) +
h2

4
(2β − γ)a>Ma + 2α(1− γ)w>Kw . (58)

and with α = γ −
1

2
, we obtain

2∆H = 2U>
k+1/2

Pk+1

− h2(α)(2β − γ)‖(ak+1 − ak )‖2
M

− 2α(1− 2α)‖wk+1 − wk‖2
K

+ 2(Fk+γ−α)>(qk+1 − qk ) + 2α(1− 2α)(qk+1 − qk )>(yk+1 − yk )

(59)

Energy Analysis – 47/57



Time-integration of flexible multi-body systems with contact. Newmark based schemes and the coefficient of restitution

Energy Analysis

Energy Analysis for the Newmark scheme

Energy analysis for HHT scheme

Conclusions

I For the Moreau–Jean, a simple variant allows us to obtain a scheme which always
dissipates energy.

I For the Newmark and the HHT scheme with retrieve the dissipation properties as
the smooth case. The term associated with impact is added is the balance.

I Open Problem: We get dissipation inequality for discrete with quadratic storage
function and plausible supply rate. The nest step is to conclude to the stability of
the scheme with this argument.
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Background
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The impacting beam benchmark

Impact in flexible structure

Example (The impacting bar)

v0

L
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The impacting beam benchmark

Impact in flexible structure

Brief Literature

I (Hughes et al., 1976) Impact of two elastic bars. Standard Newmark in position
and specific release and contact

I (Laursen and Love, 2002, 2003) Implicit treatment of contact reaction with a
position level constraints

I (Chawla and Laursen, 1998 ; Laursen and Chawla, 1997) Implicit treatment of
contact reaction with a pseudo velocity level constraints (algorithmic gap rate)

I (Vola et al., 1998) Comparison of Moreau–Jean scheme and standard Newmark
scheme

I (Dumont and Paoli, 2006) Central–difference scheme with

I (Deuflhard et al., 2007) Contact stabilized Newmark scheme. Position level
Newmark scheme with pre-projection of the velocity.

I (Doyen et al., 2011) Comparison of various position level schemes.

Although artifacts and oscillations are commonly observed, the question of
nonsmoothness of the solution, the velocity based formulation and then a possible
impact law in never addressed.
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Impact in flexible structure

Position based constraints
1000 nodes. v0 = −0.1. h = 5.10−5 Nonsmooth Newmark scheme γ = 0.6, β = γ/2
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index 3 DAE problem: oscillations at the velocity level.=⇒ reduce the index.
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Impact in flexible structure

Influence of high frequencies dissipation
1000 nodes. v0 = −0.1. h = 5.10−6 e = 0.0 Nonsmooth Newmark scheme
γ = 0.5, β = γ/2.
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The impacting beam benchmark

Impact in flexible structure

Influence of high frequencies dissipation
1000 nodes. v0 = −0.1. h = 5.10−6 e = 0.0 Nonsmooth Newmark scheme
γ = 0.6, β = γ/2.
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The impacting beam benchmark

Impact in flexible structure

Influence of mesh discretization
1000 nodes. v0 = −0.1. h = 5.10−6 e = 0.0 Nonsmooth Newmark scheme
γ = 0.6, β = γ/2.
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The impacting beam benchmark

Impact in flexible structure

Influence of mesh discretization
100 nodes. v0 = −0.1. h = 5.10−6 e = 0.0 Nonsmooth Newmark scheme
γ = 0.6, β = γ/2.
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Impact in flexible structure

Influence of mesh discretization
10 nodes. v0 = −0.1. h = 5.10−6 e = 0.0 Nonsmooth Newmark scheme
γ = 0.6, β = γ/2.
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The impacting beam benchmark

Impact in flexible structure

Influence of time–step
1000 nodes. v0 = −0.1. h = 5.10−6 e = 0.0 Nonsmooth Newmark scheme
γ = 0.6, β = γ/2.
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The impacting beam benchmark

Impact in flexible structure

Influence of time–step
1000 nodes. v0 = −0.1. h = 5.10−5 e = 0.0 Nonsmooth Newmark scheme
γ = 0.6, β = γ/2.
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The impacting beam benchmark

Impact in flexible structure

Influence of time–step
1000 nodes. v0 = −0.1. h = 5.10−4 e = 0.0 Nonsmooth Newmark scheme
γ = 0.6, β = γ/2.
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Impact in flexible structure

Influence of the coefficient of restitution
1000 nodes. v0 = −0.1. h = 5.10−5 e = 0.0 Nonsmooth Newmark scheme
γ = 0.6, β = γ/2.
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The impacting beam benchmark

Impact in flexible structure

Influence of the coefficient of restitution
1000 nodes. v0 = −0.1. h = 5.10−5 e = 0.5 Nonsmooth Newmark scheme
γ = 0.6, β = γ/2.
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The impacting beam benchmark

Impact in flexible structure

Influence of the coefficient of restitution
1000 nodes. v0 = −0.1. h = 5.10−5 e = 1.0 Nonsmooth Newmark scheme
γ = 0.6, β = γ/2.
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The impacting beam benchmark

Impact in flexible structure

Discussion

I Reduction of order needs to write the constraints at the velocity level. Even in
GGL approach.

I How to known if we need an impact law ? For a finite–freedom mechanical
systems, we have to precise one. At the limit, the concept of coefficient of
restitution can be a problem. Work of Michelle Schatzman.
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