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Objectives & Motivations

The nonsmooth generalized-c scheme with a simultaneous enforcement of constraints at position and velocity levels.

Mechanical systems with contact, impact and friction
Simulation of flexible multibody systems.

Simulation of the ExoMars Rover (INRIA/Trasys Space/ESA)
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The nonsmooth generalized-c scheme with a simultaneous enforcement of constraints at position and velocity levels.
Objectives & Motivations

Mechanical systems with contact, impact and friction

Simulation of flexible multibody systems.
Simulation of wind turbines (DYNAWIND project)
Joint work with O. Briils, Q.Z. Chen and G. Virlez (Université de Ligge)
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Objectives & Motivations

NonSmooth Multibody Systems

Scleronomous holonomic perfect unilateral constraints and joints

» Nonsmooth equations of motion

at = vt (1a)
M(q)dv—gl di = f(qv,t)dt (1b)
A I
g = 0 (1c)
0<gh(q L di¥>0 (1d)
where
g > 8¢ = Vg(q).

> U index set of indices of the unilateral constraints,
> U the set of bilateral constraints,
»CcC=UulU
> Newton Impact law g{v*(t) = —egl{v=(t)
e is the coefficient of restitution.
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Objectives & Motivations

The Moreau's sweeping process of second order

Definition (Moreau [1983, 1988])

A key stone of this formulation is the inclusion in terms of velocity.

qQ = v (2a)

M(q)dv—gl di = f(q,v,t)dt (2b)

gqav =0 (20)

ifg/(q) <OthenO0< glvtegivc L di>0, Vjeu (2d)

Comments

This formulation provides a common framework for the nonsmooth dynamics
containing inelastic impacts without decomposition.

=» Foundation for the Moreau—Jean time—stepping approach.
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Moreau—Jean time stepping scheme [Moreau, 1988, Jean, 1999]

Principle

Poit ~ di((tn, trs1]) = / di 3)
(t,,,t,,+1]
qn+1 = dn + hV,.,+9, (43)
M(dnt0)(Vot1 —Vn) — hfarg = gq(Anio)Pnit, (4b)
if 2<0,0<g  vi1teggavn L P, >0 (4c)
(4d)
with
> 0€0,1]

> Xpro = (1 — 0)xpt1 + 0xp
> fore = f(tn+6:Ant6,Vnio)
> Zn is a prediction of the constraints, e.g. 8, = gn + h/2g{1.,,,v,1
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Objectives & Motivations

Objectives & Motivations

Limitations of the Moreau—Jean scheme
> Moreau—Jean time—stepping : strong numerical damping for 6 > 1/2.
=» Improve numerical damping with a controlled damping of high frequencies.

> Constraint treated at the velocity level : penetration at the position level.
=» solve the constraints at position level.

> Rough activation of constraints at the velocity level

Means

> Splitting between impulsive and non impulsive terms and use of a—scheme. [Chen
et al., 2013]

» Gear—Gupta—Leimkuhler (GGL) enforcement of the unilateral constraint at the
position level. [Acary, 2013]

» Nonsmooth Newton method viewed as an active set method.
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Nonsmooth Newmark's scheme and the cv—schemes family

The nonsmooth generalized o scheme

GGL approach to stabilize the constraints at the position level

dw = dv — V dt (5)
Smooth (non-impulsive) part
Solutions of the following DAE
i v (6a)
M(q) ¥ —gq (a) X f(a,v,t) (6b)
gy (a) ¥ 0 (6c)
b 0 (6d)

with the initial value ¥(t,) = v(tn), G(tn) = q(tn).
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Nonsmooth Newmark's scheme and the cv—schemes family

The nonsmooth generalized o scheme

Splitting the dynamics between smooth and nonsmooth part

a = v (7a)
dv. = dw+vdt (7b)
2 UT U
M(a)v—gg" X' = f(a,v,1) (7¢)
gfv = 0 (7d)
Moo= o (7e)
M(q)dw —gJ (di—Adt) = 0 (7f)
giv = 0 (7e)
ifg/(q) <OthenO< giv+egiv: L di>0, VjeUu (7h)
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Nonsmooth Newmark's scheme and the cv—schemes family

The nonsmooth generalized o scheme

Splitting the dynamics between smooth and nonsmooth part

The equations of motion become
M(q)d — g4
g"(a)
0<g“(a)
dv

XU

=

& u,Tm
M(q) ¥ — gq

<t

g

Pl
<

M(q) dw — g/ (di — Adt)
gHv

ifgj(q)<0then0<g{].v+eg{;v_

= M(q)v (8a)
=0 (8b)
1L w4 >0 (8¢)
= dw4idt (8d)
= f(q,v,t) (8e)
=0 (8f)
=0 (8g)
=0 (8h)
=0 (8)
1 difzo0, Vieu (8))
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The nonsmooth generalized o scheme

Velocity jumps and position correction
The multipliers A(t,; t) and v(ts; t) are defined as

Atnit) = /(t t](di*S\(T)dT) (9a)

v(tn;t) = /t ((7) + N(tn; 7)) dT (9b)

with A(tn; tn) = v(tn; ta) = 0.
The velocity jump and position correction variables

W(tnit) = /(t RUSVORO (10a)
Vi) = [ @-9ae=a() - (o) (10b)

=» Low-order approximation of impulsive terms.
=» Higher—order approximation of non impulsive terms.
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Nonsmooth Newmark's scheme and the cv—schemes family

The nonsmooth generalized o scheme

M(an+1)Uni1 —8qpr1 Va1 = O (11a)
g'(@n1) = 0 (11b)
0<g’(@n1) Ly, > 0 (11c)
& u,T U o
M(An+1)Vnr1 — F(Ant1,Varts tni1) — g iy Ansr = O (11d)
gliiVnn = 0 (1le)
M(ar11)Wii1 —8qpiihot1 = O (11f)
gnivnn = 0 (11g)
ifg/(a),1) <Othen 0< gl Vo1 teghovn LN, > 0YjeU
o 5 = = =
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The nonsmooth generalized o scheme

Nonsmooth generalized a-scheme

Gni1 = Qo+ hva + H2(0.5 — Bas + h?Bas1 (12a)
An+1 =  Qny1+ Uppr (12b)
Vnt1 = Vp+ h(l — A/)a,, + hyap41 (12C)
Vorl1 = Vpy1 +Wppg (12d)
(1 — am)anis +aman = (1 —af)inpi1 + afin (12e)

Special cases

> am = af = 0 =» Nonsmooth Newmark
> am = 0,ar € [0,1/3] = Nonsmooth Hilber-Hughes—Taylor (HHT)

Spectral radius at infinity po € [0, 1]

2Poo -1 Poo

am=———, af=— ",
m poo+1 ,Uoo+1

1 1
B= 0+ 3 (13)
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Numerical illustrations

Numerical Illustrations

Two ball oscillator with impact.
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Numerical Illustrations
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Figure 7. Numerical results for the total energy of the bouncing oscillator.
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Bouncing Pendulum
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Numerical Illustrations

Bouncing Pendulum
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Impacting elastic bar

Unilateral constraint
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Numerical Illustrations

Impacting elastic bar
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Conclusions

The nonsmooth generalized o scheme

Summary

> Improved accuracy and energy behavior when smooth nonlinear contributions are
present

» Constraints at position and velocity levels are both satisfied in discrete—time.

> Activation of constraints at velocity levels are solved in a global nonsmooth
Newton Method
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Thank you for your attention.
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