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†INRIA Rhône-Alpes, Centre de recherche Grenoble, St Ismier, France
◦ Universidad Nacional del Litoral - Conicet, CIMEC, Santa Fe, Argentina

– 1/21



The nonsmooth generalized-α scheme with a simultaneous enforcement of constraints at position and velocity levels.

Objectives & Motivations

Mechanical systems with contact, impact and friction
Simulation of flexible multibody systems.
Simulation of the ExoMars Rover (INRIA/Trasys Space/ESA)
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Objectives & Motivations

NonSmooth Multibody Systems

Scleronomous holonomic perfect unilateral constraints and joints

g

λ

I Nonsmooth equations of motion

q̇+ = v+ (1a)

M(q) dv − gT
q di = f(q, v, t)dt (1b)

gU (q) = 0 (1c)

0 6 gU (q) ⊥ diU > 0 (1d)

where
I gq = ∇g(q).
I U index set of indices of the unilateral constraints,
I U the set of bilateral constraints,
I C = U ∪ U

I Newton Impact law gUq v+(t) = −e gUq v−(t)
e is the coefficient of restitution.
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Objectives & Motivations

The Moreau’s sweeping process of second order

Definition (Moreau [1983, 1988])
A key stone of this formulation is the inclusion in terms of velocity.

q̇ = v (2a)

M(q) dv − gT
q di = f(q, v, t)dt (2b)

gUq v = 0 (2c)

if g j (q) 6 0 then 0 6 g j
q v + e g j

q v− ⊥ di j > 0, ∀ j ∈ U (2d)

Comments
This formulation provides a common framework for the nonsmooth dynamics
containing inelastic impacts without decomposition.
Ü Foundation for the Moreau–Jean time–stepping approach.

Objectives & Motivations – 4/21



The nonsmooth generalized-α scheme with a simultaneous enforcement of constraints at position and velocity levels.

Objectives & Motivations

Moreau–Jean time stepping scheme [Moreau, 1988, Jean, 1999]

Principle

Pn+1 ≈ di((tn, tn+1]) =

∫
(tn,tn+1]

di (3)

qn+1 = qn + hvn+θ, (4a)

M(qn+θ)(vn+1 − vn)− hfn+θ = gq(qn+θ)Pn+1, (4b)

if ḡ j
n 6 0, 0 6 g j

q,n+1 vn+1 + e g j
q,n vn ⊥ P j

n+1 > 0 (4c)

(4d)

with

I θ ∈ [0, 1]

I xn+θ = (1− θ)xn+1 + θxn

I fn+θ = f (tn+θ, qn+θ, vn+θ)

I ḡn is a prediction of the constraints, e.g. ḡn = gn + h/2g j
q,n vn
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Objectives & Motivations

Objectives & Motivations

Limitations of the Moreau–Jean scheme

I Moreau–Jean time–stepping : strong numerical damping for θ � 1/2.
Ü Improve numerical damping with a controlled damping of high frequencies.

I Constraint treated at the velocity level : penetration at the position level.
Ü solve the constraints at position level.

I Rough activation of constraints at the velocity level

Means

I Splitting between impulsive and non impulsive terms and use of α–scheme. [Chen
et al., 2013]

I Gear–Gupta–Leimkuhler (GGL) enforcement of the unilateral constraint at the
position level. [Acary, 2013]

I Nonsmooth Newton method viewed as an active set method.
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Nonsmooth Newmark’s scheme and the α–schemes family

The nonsmooth generalized α scheme

GGL approach to stabilize the constraints at the position level

dw = dv − ˙̃v dt (5)

Smooth (non-impulsive) part
Solutions of the following DAE

˙̃q = ṽ (6a)

M(q) ˙̃v − gT
q (q) λ̃ = f(q, v, t) (6b)

gUq (q) ṽ = 0 (6c)

λ̃
U

= 0 (6d)

with the initial value ṽ(tn) = v(tn), q̃(tn) = q(tn).
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Nonsmooth Newmark’s scheme and the α–schemes family

The nonsmooth generalized α scheme

Splitting the dynamics between smooth and nonsmooth part

q̇ = v (7a)

dv = dw + ˙̃v dt (7b)

M(q) ˙̃v − gU,Tq λ̃
U

= f(q, v, t) (7c)

gUq ṽ = 0 (7d)

λ̃
U

= 0 (7e)

M(q)dw − gT
q (di− λ̃ dt) = 0 (7f)

gUq v = 0 (7g)

if g j (q) 6 0 then 0 6 g j
q v + e g j

q v− ⊥ di j > 0, ∀j ∈ U (7h)
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Nonsmooth Newmark’s scheme and the α–schemes family

The nonsmooth generalized α scheme

Splitting the dynamics between smooth and nonsmooth part
The equations of motion become

M(q) q̇− gT
q µ = M(q) v (8a)

���XXXq̇ = v→ gU (q) = 0 (8b)

0 6 gU (q) ⊥ µU > 0 (8c)

dv = dw + ˙̃v dt (8d)

M(q) ˙̃v − gU,Tq λ̃
U

= f(q, v, t) (8e)

gUq ṽ = 0 (8f)

λ̃
U

= 0 (8g)

M(q)dw − gT
q (di− λ̃ dt) = 0 (8h)

gUq v = 0 (8i)

if g j (q) 6 0 then 0 6 g j
q v + e g j

q v− ⊥ di j > 0, ∀j ∈ U (8j)
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Nonsmooth Newmark’s scheme and the α–schemes family

The nonsmooth generalized α scheme

Velocity jumps and position correction
The multipliers Λ(tn; t) and ν(tn; t) are defined as

Λ(tn; t) =

∫
(tn,t]

(di− λ̃(τ)dτ) (9a)

ν(tn; t) =

∫ t

tn

(µ(τ) + Λ(tn; τ)) dτ (9b)

with Λ(tn; tn) = ν(tn; tn) = 0.
The velocity jump and position correction variables

W(tn; t) =

∫
(tn,t]

dw = v(t)− ṽ(t) (10a)

U(tn; t) =

∫ t

tn

(q̇− ṽ)dt = q(t)− q̃(t) (10b)

Ü Low-order approximation of impulsive terms.
Ü Higher–order approximation of non impulsive terms.
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Nonsmooth Newmark’s scheme and the α–schemes family

The nonsmooth generalized α scheme

M(qn+1)Un+1 − gT
q,n+1 νn+1 = 0 (11a)

gU (qn+1) = 0 (11b)

0 6 gU (qn+1) ⊥ νUn+1 > 0 (11c)

M(qn+1) ˙̃vn+1 − f(qn+1, vn+1, tn+1)− gU,Tq,n+1 λ̃
U
n+1 = 0 (11d)

gUq,n+1 ṽn+1 = 0 (11e)

M(qn+1)Wn+1 − gT
q,n+1Λn+1 = 0 (11f)

gUq,n+1vn+1 = 0 (11g)

if g j (q∗n+1) 6 0 then 0 6 g j
q,n+1 vn+1 + e g j

q,n vn ⊥ Λj
n+1 > 0,∀j ∈ U
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Nonsmooth Newmark’s scheme and the α–schemes family

The nonsmooth generalized α scheme

Nonsmooth generalized α-scheme

q̃n+1 = qn + hvn + h2(0.5− β)an + h2βan+1 (12a)

qn+1 = q̃n+1 + Un+1 (12b)

ṽn+1 = vn + h(1− γ)an + hγan+1 (12c)

vn+1 = ṽn+1 + Wn+1 (12d)

(1− αm)an+1 + αman = (1− αf ) ˙̃vn+1 + αf
˙̃vn (12e)

Special cases

I αm = αf = 0 Ü Nonsmooth Newmark

I αm = 0, αf ∈ [0, 1/3] Ü Nonsmooth Hilber-Hughes–Taylor (HHT)

Spectral radius at infinity ρ∞ ∈ [0, 1]

αm =
2ρ∞ − 1

ρ∞ + 1
, αf =

ρ∞

ρ∞ + 1
, β =

1

4
(γ +

1

2
)2. (13)

Nonsmooth Newmark’s scheme and the α–schemes family – 12/21



The nonsmooth generalized-α scheme with a simultaneous enforcement of constraints at position and velocity levels.

Numerical illustrations

Numerical Illustrations

Two ball oscillator with impact.
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Numerical illustrations

Numerical Illustrations12 Q.Z. CHEN ET AL.
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Figure 7. Numerical results for the total energy of the bouncing oscillator.

An analytically-exact solution for this benchmark is detailed in [20]. For comparison, the same
parameters are applied in this test example: Young’s Modulus E =900 Pa, density of the bar
ρ =1 kg/m3, undeformed initial length L =10 m, initial height to the bottom h0 =5 m, and initial
velocity v0 =10 m/s. The restitution coefficient for the impact is set as 0. The gravity acceleration
g is set to 0 so that only one close impact will occur.

The bar is discretized in space by 200 finite elements. Time step size can be chosen based on
the evaluation of the Courant number – a relevant ratio which links the mesh size and the step size
[20]. The step size with this mesh discretization is then chosen as h =2 · 10−3 s. Other algorithmic
parameters are as: ρ∞ = 0.6 for the nonsmooth generalized-α method; θ = 1 for the Moreau–Jean
method; γ = 1 and β = 0.5625 for the fully implicit Newmark method.
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(b)

Figure 8. Comparison the numerical results for the bouncing elastic bar: (a) position, (b) pressure.

Figure 8 shows the position and the pressure on the bottom of the bar. Also, the total energy of the
bouncing elastic bar is analyzed, as shown in Figure 9. The numerical results of the position response
and the pressure are compared to the exact solution. As one can tell from the figures, close contact
analysis is stable for all the three methods. Compared to Moreau-Jean and fully implicit Newmark
methods, the nonsmooth generalized-α method has better accuracy for the position response and
the pressure, in particular for the period near/after the take-off. As for the energy performance

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2012)
Prepared using nmeauth.cls DOI: 10.1002/nme

Numerical illustrations – 14/21



The nonsmooth generalized-α scheme with a simultaneous enforcement of constraints at position and velocity levels.

Numerical illustrations

Numerical Illustrations

Bouncing Pendulum
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√
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Numerical illustrations

Numerical Illustrations

Bouncing Pendulum
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Numerical Illustrations

Impacting elastic bar
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Numerical Illustrations

Impacting elastic bar
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Impacting elastic bar
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The nonsmooth generalized α scheme

Summary

I Improved accuracy and energy behavior when smooth nonlinear contributions are
present

I Constraints at position and velocity levels are both satisfied in discrete–time.

I Activation of constraints at velocity levels are solved in a global nonsmooth
Newton Method
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Conclusions

Thank you for your attention.
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