The nonsmooth generalized- α scheme with a simultaneous enforcement of constraints at position and velocity levels.

Olivier Brüls*, Vincent Acary † , and Alberto Cardona $^{\circ}$

8th European Nonlinear Dynamics Conference (ENOC 2014) Vienna, July 6-11th, 2014.

*University of Liège, Department of Aerospace and Mechanical Engineering (LTAS), Liège, Belgium [†]INRIA Rhône-Alpes, Centre de recherche Grenoble, St Ismier, France ° Universidad Nacional del Litoral - Conicet, CIMEC, Santa Fe, Argentina

The nonsmooth generalized- α scheme with a simultaneous enforcement of constraints at position and velocity levels. Objectives & Motivations

Mechanical systems with contact, impact and friction

Simulation of flexible multibody systems. Simulation of the ExoMars Rover (INRIA/Trasys Space/ESA)

The nonsmooth generalized- α scheme with a simultaneous enforcement of constraints at position and velocity levels. Objectives & Motivations

Mechanical systems with contact, impact and friction

Simulation of flexible multibody systems. Simulation of wind turbines (DYNAWIND project) Joint work with O. Brüls, Q.Z. Chen and G. Virlez (Université de Liège)

NonSmooth Multibody Systems

Scleronomous holonomic perfect unilateral constraints and joints

Nonsmooth equations of motion

$$\dot{\mathbf{q}}^+ = \mathbf{v}^+$$
 (1a)

$$\mathsf{M}(\mathsf{q})\,\mathrm{d}\mathsf{v}-\mathsf{g}_{\mathsf{q}}^{\mathsf{T}}\,\mathrm{d}\mathsf{i} \quad = \quad \mathsf{f}(\mathsf{q},\mathsf{v},t)\,\mathrm{d}t \qquad (\mathsf{1}\mathsf{b})$$

$$\mathbf{g}^{\overline{\mathcal{U}}}(\mathbf{q}) = \mathbf{0}$$
 (1c)

$$\mathbf{0} \leqslant \mathbf{g}^{\mathcal{U}}(\mathbf{q}) \perp \mathrm{d}\mathbf{i}^{\mathcal{U}} \geqslant \mathbf{0}$$
 (1d)

where

- gq = ∇g(q).
 U index set of indices of the unilateral constraints,
- ▶ *U* the set of bilateral constraints,
- $\triangleright C = \mathcal{U} \cup \overline{\mathcal{U}}$
- Newton Impact law $\mathbf{g}_{\mathbf{q}}^{\mathcal{U}}\mathbf{v}^{+}(t) = -e\,\mathbf{g}_{\mathbf{q}}^{\mathcal{U}}\mathbf{v}^{-}(t)$ e is the coefficient of restitution

The Moreau's sweeping process of second order

Definition (Moreau [1983, 1988])

A key stone of this formulation is the inclusion in terms of velocity.

$$\dot{\mathbf{q}} = \mathbf{v}$$
 (2a)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

$$\mathbf{M}(\mathbf{q}) \,\mathrm{d}\mathbf{v} - \mathbf{g}_{\mathbf{q}}^{\mathsf{T}} \,\mathrm{d}\mathbf{i} = \mathbf{f}(\mathbf{q}, \mathbf{v}, t) \,\mathrm{d}t \tag{2b}$$

$$\mathbf{g}_{\mathbf{q}}^{\overline{U}}\mathbf{v} = \mathbf{0}$$
 (2c)

$$\text{if } g^j(\mathbf{q}) \leqslant 0 \text{ then } 0 \leqslant g^j_{\mathbf{q}} \mathbf{v} + e \, g^j_{\mathbf{q}} \mathbf{v}^- \quad \bot \quad \mathrm{d} i^j \geqslant 0, \quad \forall j \in \mathcal{U} \tag{2d}$$

Comments

This formulation provides a common framework for the nonsmooth dynamics containing inelastic impacts without decomposition.

→ Foundation for the Moreau–Jean time–stepping approach.

The nonsmooth generalized- α scheme with a simultaneous enforcement of constraints at position and velocity levels. Objectives & Motivations

Moreau–Jean time stepping scheme [Moreau, 1988, Jean, 1999] Principle

$$P_{n+1} \approx di((t_n, t_{n+1}]) = \int_{(t_n, t_{n+1}]} \mathrm{d}i$$
(3)

$$\mathbf{q}_{n+1} = \mathbf{q}_n + h \mathbf{v}_{n+\theta}, \qquad (4a)$$

$$M(\mathbf{q}_{n+\theta})(\mathbf{v}_{n+1}-\mathbf{v}_n)-hf_{n+\theta} = g_q(\mathbf{q}_{n+\theta})P_{n+1}, \qquad (4b)$$

$$\text{if} \quad \bar{g}_n^j \leqslant 0, 0 \leqslant g_{\mathbf{q},n+1}^j \, \mathbf{v}_{n+1} + e \, g_{\mathbf{q},n}^j \, \mathbf{v}_n \quad \bot \quad P_{n+1}^j \geqslant 0 \tag{4c}$$

(4d)

with

θ ∈ [0, 1]

$$x_{n+\theta} = (1-\theta)x_{n+1} + \theta x_n$$

$$f_{n+\theta} = f(t_{n+\theta}, \mathbf{q}_{n+\theta}, \mathbf{v}_{n+\theta})$$

• \bar{g}_n is a prediction of the constraints, e.g. $\bar{g}_n = g_n + h/2g_{\mathbf{q},n}^j \mathbf{v}_n$

3

イロト 不得下 不足下 不足下

Objectives & Motivations

Limitations of the Moreau–Jean scheme

- Moreau-Jean time-stepping : strong numerical damping for θ ≫ 1/2.
 → Improve numerical damping with a controlled damping of high frequencies.
- ▶ Constraint treated at the velocity level : penetration at the position level.
 → solve the constraints at position level.
- Rough activation of constraints at the velocity level

Means

- Splitting between impulsive and non impulsive terms and use of α-scheme. [Chen et al., 2013]
- Gear–Gupta–Leimkuhler (GGL) enforcement of the unilateral constraint at the position level. [Acary, 2013]
- Nonsmooth Newton method viewed as an active set method.

イロト 不得下 イヨト イヨト

The nonsmooth generalized α scheme

GGL approach to stabilize the constraints at the position level

$$\mathrm{d}\mathbf{w} = \mathrm{d}\mathbf{v} - \dot{\tilde{\mathbf{v}}}\,\mathrm{d}t\tag{5}$$

Smooth (non-impulsive) part

Solutions of the following DAE

$$\dot{ ilde{{f q}}}~=~ ilde{{f v}}$$
 (6a)

$$\mathbf{M}(\mathbf{q})\,\dot{\tilde{\mathbf{v}}} - \mathbf{g}_{\mathbf{q}}^{\mathsf{T}}(\mathbf{q})\,\tilde{\boldsymbol{\lambda}} = \mathbf{f}(\mathbf{q},\mathbf{v},t) \tag{6b}$$

$$\mathbf{g}_{\mathbf{q}}^{\overline{\mathcal{U}}}(\mathbf{q})\,\tilde{\mathbf{v}} = \mathbf{0}$$
 (6c)

$$ilde{oldsymbol{\lambda}}^{\mathcal{U}} = \mathbf{0}$$
 (6d)

with the initial value $\tilde{\mathbf{v}}(t_n) = \mathbf{v}(t_n)$, $\tilde{\mathbf{q}}(t_n) = \mathbf{q}(t_n)$.

The nonsmooth generalized α scheme

Splitting the dynamics between smooth and nonsmooth part

$$\mathrm{d}\mathbf{v} = \mathrm{d}\mathbf{w} + \dot{\tilde{\mathbf{v}}} \,\mathrm{d}t \tag{7b}$$

$$\mathbf{M}(\mathbf{q})\,\dot{\tilde{\mathbf{v}}} - \mathbf{g}_{\mathbf{q}}^{\overline{\mathcal{U}},\,\mathbf{T}}\,\,\tilde{\boldsymbol{\lambda}}^{\overline{\mathcal{U}}} = \mathbf{f}(\mathbf{q},\mathbf{v},t) \tag{7c}$$

$$\mathbf{g}_{\mathbf{q}}^{\overline{\mathcal{U}}} \, \tilde{\mathbf{v}} = \mathbf{0}$$
 (7d)

$$ilde{\lambda}^{\mathcal{U}} = \mathbf{0}$$
 (7e)

$$\mathbf{M}(\mathbf{q})\,\mathrm{d}\mathbf{w} - \mathbf{g}_{\mathbf{q}}^{\mathsf{T}}\,(\mathrm{d}\mathbf{i} - \tilde{\boldsymbol{\lambda}}\,\mathrm{d}t) = \mathbf{0} \tag{7f}$$

$$\mathbf{g}_{\mathbf{q}}^{\overline{\mathcal{U}}}\mathbf{v} = \mathbf{0}$$
 (7g)

$$\text{if } g^j(\mathbf{q}) \leqslant 0 \text{ then } 0 \leqslant g^j_{\mathbf{q}} \mathbf{v} + e \, g^j_{\mathbf{q}} \mathbf{v}^- \quad \bot \quad \mathrm{d}^{j} \geqslant 0, \quad \forall j \in \mathcal{U} \tag{7h}$$

The nonsmooth generalized- α scheme with a simultaneous enforcement of constraints at position and velocity levels. Nonsmooth Newmark's scheme and the α -schemes family

The nonsmooth generalized α scheme

Splitting the dynamics between smooth and nonsmooth part

The equations of motion become

$$\mathsf{M}(\mathbf{q}) \dot{\mathbf{q}} - \mathbf{g}_{\mathbf{q}}^{T} \boldsymbol{\mu} = \mathsf{M}(\mathbf{q}) \mathbf{v}$$
 (8a)

$$\dot{\mathbf{q}} \rightarrow \mathbf{g}^{\overline{\mathcal{U}}}(\mathbf{q}) = \mathbf{0}$$
 (8b)

$$\mathbf{D} \leqslant \mathbf{g}^{\mathcal{U}}(\mathbf{q}) \perp \mu^{\mathcal{U}} \geqslant \mathbf{0}$$
 (8c)

$$\mathrm{d}\mathbf{v} = \mathrm{d}\mathbf{w} + \dot{\tilde{\mathbf{v}}}\,\mathrm{d}t \tag{8d}$$

$$\mathbf{M}(\mathbf{q})\dot{\tilde{\mathbf{v}}} - \mathbf{g}_{\mathbf{q}}^{\overline{\mathcal{U}},T} \,\tilde{\boldsymbol{\lambda}}^{\overline{\mathcal{U}}} = \mathbf{f}(\mathbf{q},\mathbf{v},t) \tag{8e}$$

$$\mathbf{g}_{\mathbf{q}}^{\overline{\mathcal{U}}} \, \tilde{\mathbf{v}} = \mathbf{0}$$
 (8f)

$$ilde{oldsymbol{\lambda}}^{\mathcal{U}} = \mathbf{0}$$
 (8g)

$$\mathbf{M}(\mathbf{q})\,\mathrm{d}\mathbf{w} - \mathbf{g}_{\mathbf{q}}^{\mathsf{T}}\,(\mathrm{d}\mathbf{i} - \tilde{\boldsymbol{\lambda}}\,\mathrm{d}t) = \mathbf{0} \tag{8h}$$

$$\mathbf{g}_{\mathbf{q}}^{\overline{\mathcal{U}}}\mathbf{v} = \mathbf{0}$$
 (8i)

$$\text{if } g^j(\mathbf{q}) \leqslant 0 \text{ then } 0 \leqslant g^j_{\mathbf{q}} \mathbf{v} + e g^j_{\mathbf{q}} \mathbf{v}^- \quad \bot \quad \mathrm{d}^{j} \geqslant 0, \quad \forall j \in \mathcal{U}$$
(8j)

The nonsmooth generalized- α scheme with a simultaneous enforcement of constraints at position and velocity levels. Nonsmooth Newmark's scheme and the α -schemes family

The nonsmooth generalized α scheme

Velocity jumps and position correction

The multipliers $\mathbf{\Lambda}(t_n; t)$ and $\mathbf{\nu}(t_n; t)$ are defined as

$$\boldsymbol{\Lambda}(t_n;t) = \int_{(t_n,t]} (\mathrm{d}\mathbf{i} - \tilde{\boldsymbol{\lambda}}(\tau) \,\mathrm{d}\tau)$$
(9a)

$$\boldsymbol{\nu}(t_n;t) = \int_{t_n}^t (\boldsymbol{\mu}(\tau) + \boldsymbol{\Lambda}(t_n;\tau)) \,\mathrm{d}\tau$$
(9b)

with $\mathbf{\Lambda}(t_n; t_n) = \mathbf{\nu}(t_n; t_n) = \mathbf{0}$. The velocity jump and position correction variables

$$\mathbf{W}(t_n;t) = \int_{(t_n,t]} \mathrm{d}\mathbf{w} = \mathbf{v}(t) - \tilde{\mathbf{v}}(t)$$
(10a)

$$\mathbf{U}(t_n;t) = \int_{t_n}^t (\dot{\mathbf{q}} - \tilde{\mathbf{v}}) dt = \mathbf{q}(t) - \tilde{\mathbf{q}}(t)$$
(10b)

- → Low-order approximation of impulsive terms.
- → Higher–order approximation of non impulsive terms.

 \square Nonsmooth Newmark's scheme and the α -schemes family

The nonsmooth generalized α scheme

$$\mathsf{M}(\mathsf{q}_{n+1})\mathsf{U}_{n+1} - \mathsf{g}_{\mathsf{q},n+1}^{\mathsf{T}} \boldsymbol{\nu}_{n+1} = \mathbf{0}$$
(11a)

$$\mathbf{g}^{\overline{\mathcal{U}}}(\mathbf{q}_{n+1}) = \mathbf{0} \tag{11b}$$

$$\mathbf{0} \leqslant \mathbf{g}^{\mathcal{U}}(\mathbf{q}_{n+1}) \perp \boldsymbol{\nu}_{n+1}^{\mathcal{U}} \geqslant \mathbf{0}$$
(11c)

$$\mathsf{M}(\mathbf{q}_{n+1})\dot{\tilde{\mathbf{v}}}_{n+1} - \mathsf{f}(\mathbf{q}_{n+1},\mathbf{v}_{n+1},t_{n+1}) - \mathbf{g}_{\mathbf{q},n+1}^{\overline{\mathcal{U}},T} \tilde{\lambda}_{n+1}^{\mathcal{U}} = \mathbf{0}$$
(11d)

$$\mathbf{g}_{\mathbf{q},n+1}^{\mathcal{U}}\,\tilde{\mathbf{v}}_{n+1} = \mathbf{0} \tag{11e}$$

$$\mathsf{M}(\mathbf{q}_{n+1})\mathsf{W}_{n+1} - \mathbf{g}_{\mathbf{q},n+1}^{\mathsf{T}}\mathsf{\Lambda}_{n+1} = \mathbf{0}$$
(11f)

$$\mathbf{g}_{\mathbf{q},n+1}^{\overline{\mathcal{U}}}\mathbf{v}_{n+1} = \mathbf{0}$$
 (11g)

$$\text{if } g^j(\textbf{q}^*_{n+1}) \leqslant 0 \text{ then } 0 \leqslant g^j_{\textbf{q},n+1} \textbf{v}_{n+1} + e \, g^j_{\textbf{q},n} \textbf{v}_n \perp \Lambda^j_{n+1} \quad \geqslant \quad 0, \forall j \in \mathcal{U} \\$$

The nonsmooth generalized- α scheme with a simultaneous enforcement of constraints at position and velocity levels. Nonsmooth Newmark's scheme and the α -schemes family

The nonsmooth generalized α scheme

Nonsmooth generalized α -scheme

$$\widetilde{\mathbf{q}}_{n+1} = \mathbf{q}_n + h\mathbf{v}_n + h^2(0.5 - \beta)\mathbf{a}_n + h^2\beta\mathbf{a}_{n+1}$$
 (12a)

$$\mathbf{q}_{n+1} = \tilde{\mathbf{q}}_{n+1} + \mathbf{U}_{n+1} \tag{12b}$$

$$\tilde{\mathbf{v}}_{n+1} = \mathbf{v}_n + h(1-\gamma)\mathbf{a}_n + h\gamma \mathbf{a}_{n+1}$$
(12c)

$$\mathbf{v}_{n+1} = \tilde{\mathbf{v}}_{n+1} + \mathbf{W}_{n+1} \tag{12d}$$

$$(1 - \alpha_m)\mathbf{a}_{n+1} + \alpha_m \mathbf{a}_n = (1 - \alpha_f)\dot{\mathbf{v}}_{n+1} + \alpha_f \dot{\mathbf{v}}_n$$
(12e)

Special cases

- ▶ $\alpha_m = \alpha_f = 0$ → Nonsmooth Newmark
- ▶ $\alpha_m = 0, \alpha_f \in [0, 1/3] \Rightarrow$ Nonsmooth Hilber-Hughes–Taylor (HHT)

Spectral radius at infinity $ho_\infty \in [0,1]$

$$\alpha_m = \frac{2\rho_{\infty} - 1}{\rho_{\infty} + 1}, \quad \alpha_f = \frac{\rho_{\infty}}{\rho_{\infty} + 1}, \quad \beta = \frac{1}{4}(\gamma + \frac{1}{2})^2. \tag{13}$$

Nonsmooth Newmark's scheme and the α -schemes family - 12/21

Two ball oscillator with impact.

Time-step : h = 2e - 3. Moreau ($\theta = 1.0$). Newmark ($\gamma = 1.0, \beta = 0.5$, $\alpha_m = \alpha_f = 0).$ HHT ($\gamma = 1.0, \beta = 0.5$, $\alpha_f = 0.1, \alpha_m = 0)$ m = 1 ke**q**₂ ... $k = 10^3 N/m$ m = 1 ke**q**₁ ...

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Figure 7. Numerical results for the total energy of the bouncing oscillator.

Bouncing Pendulum

Numerical illustrations - 15/21

Bouncing Pendulum

Numerical illustrations - 16/21

The nonsmooth generalized- α scheme with a simultaneous enforcement of constraints at position and velocity levels. Level Numerical illustrations

Numerical Illustrations

Impacting elastic bar

Numerical illustrations - 17/21

Impacting elastic bar

<ロ → < 部 → < 画 → < 画 → < 画 → Numerical illustrations - 18/21 The nonsmooth generalized- α scheme with a simultaneous enforcement of constraints at position and velocity levels. Level Numerical illustrations

Numerical Illustrations

Impacting elastic bar

<□ → < 部 → < 注 → < 注 → 注 → ○ Q (~ Numerical illustrations - 19/21

The nonsmooth generalized α scheme

Summary

 Improved accuracy and energy behavior when smooth nonlinear contributions are present

◆□▶ ◆課▶ ◆臣▶ ◆臣▶

Conclusions - 20/21

- Constraints at position and velocity levels are both satisfied in discrete-time.
- Activation of constraints at velocity levels are solved in a global nonsmooth Newton Method

Thank you for your attention.

The nonsmooth generalized- α scheme with a simultaneous enforcement of constraints at position and velocity levels. L Conclusions

- V. Acary. Projected event-capturing time-stepping schemes for nonsmooth mechanical systems with unilateral contact and Coulomb's friction. *Computer Methods in Applied Mechanics and Engineering*, 256:224 – 250, 2013. ISSN 0045-7825. doi: 10.1016/j.cma.2012.12.012. URL http://www.sciencedirect.com/science/article/pii/S0045782512003829.
- Q. Z. Chen, V. Acary, G. Virlez, and O. Brüls. A nonsmooth generalized-α scheme for flexible multibody systems with unilateral constraints. *International Journal for Numerical Methods in Engineering*, 96(8):487–511, 2013. ISSN 1097-0207. doi: 10.1002/nme.4563. URL http://dx.doi.org/10.1002/nme.4563.
- M. Jean. The non smooth contact dynamics method. Computer Methods in Applied Mechanics and Engineering, 177:235–257, 1999. Special issue on computational modeling of contact and friction, J.A.C. Martins and A. Klarbring, editors.
- J.J. Moreau. Liaisons unilatérales sans frottement et chocs inélastiques. *Comptes Rendus de l'Académie des Sciences*, 296 série II:1473–1476, 1983.
- J.J. Moreau. Unilateral contact and dry friction in finite freedom dynamics. In J.J. Moreau and Panagiotopoulos P.D., editors, *Nonsmooth Mechanics and Applications*, number 302 in CISM, Courses and lectures, pages 1–82. CISM 302, Spinger Verlag, Wien- New York, 1988. Formulation mathematiques tire du livre Contacts mechanics.