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Applications

Mechanical systems with contact, impact and friction
Divided Materials and Masonry
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The smooth multibody dynamics

Definition (Smooth multibody dynamics)

8
<
:

M(q)
dv

dt
+ F (t, q, v) = 0,

v = q̇
(1)

where

◮ F (t, q, v) = N(q, v) + Fint(t, q, v) − Fext(t)

Definition (Boundary conditions)

◮ Initial Value Problem (IVP):

t0 ∈ R, q(t0) = q0 ∈ R
n, v(t0) = v0 ∈ R

n, (2)

◮ Boundary Value Problem (BVP):

(t0,T ) ∈ R × R, Γ(q(t0), v(t0), q(T ), v(T )) = 0 (3)
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Perfect unilateral constraints

Unilateral constraints

◮ Finite set of ν unilateral constraints on the generalized coordinates :

g(q, t) = [gα(q, t) > 0, α ∈ {1 . . . ν}]T . (4)

◮ Admissible set C(t)

C(t) = {q ∈ M(t), gα(q, t) > 0, α ∈ {1 . . . ν}} . (5)

Normal cone to C(t)

NC(t)(q(t)) =

(
y ∈ R

n, y = −
X

α

λα∇gα(q, t), λα > 0, λαgα(q, t) = 0

)

(6)
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INRIA Rhône–Alpes

Introduction & Motivations

Outline

Lagrangian dynamical
systems with unilateral
constraints and friction

The smooth multibody
dynamics

The Non smooth Lagrangian
Dynamics

The Moreau’s sweeping
process

Coulomb’s friction

Numerical time–integration
schemes

Adaptive schemes

Higher Order Schemes

Splitting based Schemes

Conclusions & Perspectives

The Siconos Platform

References

Unilateral constraints as an inclusion

Definition (Perfect unilateral constraints on the smooth
dynamics)
Introduction of the multipliers µ ∈ R

m

8
>><
>>:

M(q)
dv

dt
+ F (t, q, v) = r = ∇T

q h(q, t) λ

−r ∈ NC(t)(q(t))

(7)

where r = ∇T
q g(q, t)λ generalized forces or generalized reactions due to

the constraints.

Remark

◮ The unilateral constraints are said to be perfect due to the normality
condition.

◮ Notion of normal cones can be extended to more general sets. see
(Clarke, 1975, 1983 ; ?)

◮ The right hand side is neither bounded (and then nor compact).

◮ The inclusion and the constraints concern the second order time
derivative of q.

➜ Standard Analysis of DI does no longer apply.
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Non Smooth Lagrangian Dynamics

Fundamental assumptions.

◮ The velocity v = q̇ is of Bounded Variations (B.V)
➜ The equation are written in terms of a right continuous B.V.
(R.C.B.V.) function, v+ such that

v+ = q̇+ (8)

◮ q is related to this velocity by

q(t) = q(t0) +

Z t

t0

v+(t) dt (9)

◮ The acceleration, ( q̈ in the usual sense) is hence a differential
measure dv associated with v such that

dv(]a, b]) =

Z

]a,b]
dv = v+(b) − v+(a) (10)
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Non Smooth Lagrangian Dynamics

Definition (Non Smooth Lagrangian Dynamics)

8
><
>:

M(q)dv + F (t, q, v+)dt = dr

v+ = q̇+

(11)

where dr is the reaction measure and dt is the Lebesgue measure.

Remarks

◮ The non smooth Dynamics contains the impact equations and the
smooth evolution in a single equation.

◮ The formulation allows one to take into account very complex
behaviors, especially, finite accumulation (Zeno-state).

◮ This formulation is sound from a mathematical Analysis point of view.

References
(Schatzman, 1973, 1978 ; Moreau, 1983, 1988)
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Non Smooth Lagrangian Dynamics

Decomposition of measure


dv = γ dt+ (v+ − v−) dν+ dvs

dr = f dt+ p dν+ drs
(12)

where

◮ γ = q̈ is the acceleration defined in the usual sense.

◮ f is the Lebesgue measurable force,

◮ v+ − v− is the difference between the right continuous and the left
continuous functions associated with the B.V. function v = q̇,

◮ dν is a purely atomic measure concentrated at the time ti of
discontinuities of v , i.e. where (v+ − v−) 6= 0,i.e. dν =

P
i δti

◮ p is the purely atomic impact percussions such that pdν =
P

i pi δti
◮ dvS and drS are singular measures with the respect to dt + dη.
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Impact equations and Smooth Lagrangian dynamics

Substituting the decomposition of measures into the non smooth
Lagrangian Dynamics, one obtains

Definition (Impact equations)

M(q)(v+ − v−)dν = pdν, (13)

or
M(q(ti ))(v

+(ti ) − v−(ti )) = pi , (14)

Definition (Smooth Dynamics between impacts)

M(q)γdt + F (t, q, v)dt = fdt (15)

or

M(q)γ+ + F (t, q, v+) = f + [dt − a.e.] (16)
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The Moreau’s sweeping process of second order

Definition (Moreau (1983, 1988))
A key stone of this formulation is the inclusion in terms of velocity.
Indeed, the inclusion (7) is “replaced” by the following inclusion

8
>>>>><
>>>>>:

M(q)dv + F (t, q, v+)dt = dr

v+ = q̇+

−dr ∈ NTC (q)(v
+)

(17)

Comments
This formulation provides a common framework for the non smooth
dynamics containing inelastic impacts without decomposition.
➜ Foundation for the time–stepping approaches.
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The Moreau’s sweeping process of second order

Comments

◮ The inclusion concerns measures. Therefore, it is necessary to define
what is the inclusion of a measure into a cone.

◮ The inclusion in terms of velocity v+ rather than of the coordinates q.

Interpretation

◮ Inclusion of measure, −dr ∈ K
◮ Case dr = r ′dt = fdt.

−f ∈ K (18)

◮ Case dr = piδi .
−pi ∈ K (19)

◮ Inclusion in terms of the velocity. Viability Lemma
If q(t0) ∈ C(t0), then

v+ ∈ TC (q), t > t0 ⇒ q(t) ∈ C(t), t > t0

➜ The unilateral constraints on q are satisfied. The equivalence
needs at least an impact inelastic rule.
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The Moreau’s sweeping process of second order

The Newton-Moreau impact rule

− dr ∈ NTC (q(t))(v
+(t) + ev−(t)) (20)

where e is a coefficient of restitution.
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The Moreau’s sweeping process of second order

The case of C is finitely represented

C = {q ∈ M(t), gα(q) > 0, α ∈ {1 . . . ν}} . (21)

Decomposition of dr and v+ onto the tangent and the normal cone.

dr =
X

α

∇T
q gα(q) dλα (22)

U+
α = ∇qgα(q) v+, α ∈ {1 . . . ν} (23)

Complementarity formulation (under constraints qualification condition)

− dλα ∈ NTIR+
(gα)(U

+
α ) ⇔ if gα(q) 6 0, then 0 6 U+

α ⊥ dλα > 0

(24)

The case of C is IR+

− dr ∈ NC (q) ⇔ 0 6 q ⊥ dr > 0 (25)

is replaced by

− dr ∈ NTC (q)(v
+) ⇔ if q 6 0, then 0 6 v+ ⊥ dr > 0 (26)
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Coulomb’s friction

P

C

~n

~t
~s

RN

RT

R

−UT

Figure: Coulomb’s friction. The sliding case.

Definition (Coulomb’s friction)
Coulomb’s friction says the following. If g(q) = 0 then:

8
>>><
>>>:

If UT(t) = 0 then R ∈ C

If UT(t) 6= 0 then ||RT(t)|| = µ|RN| and there exists a scalar a > 0

such that RT(t) = −aUT(t)
(27)

where C = {R, ||RT(t)|| 6 µ|RN| } is the Coulomb friction cone
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Coulomb’s friction

Definition (Coulomb’s friction as an inclusion into a disk)
Let us introduce the following inclusion (Moreau, 1988), using the
indicator function ψD(·):

−UT ∈ ∂ψD(RT) (28)

where D = {RT, ||RT(t)|| 6 µ|RN| } is the Coulomb friction disk

Definition (Coulomb’s friction as a variational inequality (VI))
Then (28) appears to be equivalent to

8
<
:

RT ∈ D

〈UT, z − RT〉 > 0 for all z ∈ D
(29)

and to
RT = projD[RT − ρUT], for all ρ > 0 (30)
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Definition (Coulomb’s Friction as a Second–Order Cone
Complementarity Problem)
Let us introduce the modified velocity bU defined by

bU = [UN + µ ||UT||,UT]T . (31)

This notation provides us with a synthetic form of the Coulomb friction as

−bU ∈ ∂ψC(R), (32)

or
C∗ ∋ bU ⊥ R ∈ C. (33)

where C∗ = {v ∈ IR
n | rT v > 0, ∀r ∈ C} is the dual cone.
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Coulomb’s friction

P

C

C◦

~n

~t

~s

RN

RT

R

−UT

−UT

−µ‖UT‖

−µ‖UT‖
−bU

−bU

Figure: Coulomb’s friction and the modified velocity bU. The sliding case.
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State–of–the–art

Numerical time–integration methods for Nonsmooth Multibody systems
(NSMBS):

Nonsmooth event capturing methods (Time–stepping methods)

� robust, stable and proof of convergence

� low kinematic level for the constraints

� able to deal with finite accumulation

� very low order of accuracy even in free flight motions

Nonsmooth event tracking methods (Event–driven methods)

� high level integration of free flight motions

� no proof of convergence

� sensibility to numerical thresholds

� reformulation of constraints at higher kinematic levels.

� unable to deal with finite accumulation
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Objectives & means

Objectives
Design nonsmooth event capturing methods with

◮ same properties as standard methods (robustness, accumulation, . . . )

◮ Higher resolution (ratio error/computational cost)

◮ Higher order of accuracy

Means

1. Adaptive time–step size and order strategies for standard methods

2. Mixed integrators with rough pre-detection of events

3. Splitting strategies

4. Ad hoc detection of discontinuity and order of discontinuity methods.
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NonSmooth Multibody Systems (NSMBS)

General definition

8
>>>>>><
>>>>>>:

M(q)v̇ = F (t, q, v) + G(t, q)λ (34a)

q̇ = v (34b)

w = g(t, q, v) (34c)

0 ∈ S(w , λ, t) + T (w , λ, t) (34d)

v+ = F(v−, q, t) (34e)

◮ S : IR
m×m × IR 7→ IR

m×m continuously differentiable mapping

◮ T : IR
m×m × IR IR

m×m multivalued mapping with a closed graph.

With scleronomous holonomic perfect unilateral constraints

8
>>><
>>>:

M(q)v̇ = F (t, q, v) + G(q) λ

q̇ = v

0 6 y = g(q) ⊥ λ > 0

v+ = F(v−, q, t)

(35)

where G(q) = ∇g(q)
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NonSmooth Multibody Systems (NSMBS)

Academic examples I

g

q

m

f (t)

0

(a) Bouncing ball example

q

0

m

(b) Linear Oscillator example

Figure: Academic test examples with analytical solutions
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NonSmooth Multibody Systems (NSMBS)
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NonSmooth Multibody Systems (NSMBS)
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NonSmooth Multibody Systems (NSMBS)

Academic examples II
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(a) N Bouncing balls example

Figure: Academic test examples
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Moreau’s Time stepping scheme

Principle

8
>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

M(qk+θ)(vk+1 − vk) − hF̃k+θ = G(qk+θ)Pk+1, (36a)

qk+1 = qk + hvk+θ, (36b)

Uk+1 = GT (qk+θ) vk+1 (36c)

−Pk+1 ∈ ∂ψT
IR

m
+

(ỹk+γ )(Uk+1 + eUk ), (36d)

ỹk+γ = yk + hγUk , γ ∈ [0, 1]. (36e)

with θ ∈ [0, 1], γ > 0 and xk+α = (1 − α)xk+1 + αxk and ỹk+γ is a
prediction of the constraints.

Properties

◮ Convergence results for one constraints

◮ Convergence results for multiple constraints problems with acute
kinetic angles

◮ No theoretical proofs of order
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Schatzman–Paoli’s Time stepping scheme

Principle

8
>>>>>>>><
>>>>>>>>:

M(qk + 1)(qk+1 − 2qk + qk−1) − h2F (tk+θ , qk+θ, vk+θ) = pk+1,(37a)

vk+1 =
qk+1 − qk−1

2h
, (37b)

−pk+1 ∈ NK

„
qk+1 + eqk−1

1 + e

«
, (37c)

where NK defined the normal cone to K .
For K = {q ∈ IR

n, y = g(q) > 0}

0 6 g

„
qk+1 + eqk−1

1 + e

«
⊥ ∇g

„
qk+1 + eqk−1

1 + e

«
Pk+1 > 0 (38)

Properties

◮ Convergence results for one constraints

◮ Convergence results for multiple constraints problems with acute
kinetic angles

◮ No theoretical proof of order
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Measuring error and convergence

Convergence in the sense of filled-in graph (Moreau (1978))

gr⋆(f ) = {(t, x) ∈ [0,T ] × IR
n, 0 6 t 6 T and x ∈ [f (t−), f (t+)])}.

(39)

Such graphs are closed bounded subsets of [0,T ] × IR
n, hence, we can use

the Hausdorff distance between two such sets with a suitable metric:

d((t, x), (s, y)) = max{|t − s|, ‖x − y‖}. (40)

Defining the excess of separation between two graphs by

e(gr⋆(f ), gr⋆(g)) = sup
(t,x)∈gr⋆(f )

inf
(s,y)∈gr⋆(g)

d((t, x), (s, y)), (41)

the Hausdorff distance between two filled-in graphs h⋆ is defined by

h⋆(gr⋆(f ), gr⋆(g)) = max{e(gr⋆(f ), gr⋆(g)), e(gr⋆(g), gr⋆(f ))}. (42)
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Measuring error and convergence

An equivalent grid-function norm to the function norm in L1

‖e‖1 = h
NX

i=0

|fi − f (ti )| (43)

In the same way, the p − norm can be defined by

‖e‖p =

 
h

NX

i=0

|fi − f (ti )|
p

!1/p

(44)

The computation of this two last norm is easier to implement for
piecewise continuous analytical function than the Hausdorff distance.

Global order of convergence.

Definition
A one-step time–integration scheme is of order q for a given norm ‖ · ‖ if
there exists a constant C such that

‖e‖ = Chq + O(hq+1) (45)
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Empirical order of convergence. Moreau’s time–stepping
scheme
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(a) The bouncing ball example

Figure: Empirical order of convergence of the Moreau’s time-stepping scheme.
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Empirical order of convergence. Moreau’s time–stepping
scheme
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Figure: Empirical order of convergence of the Moreau’s time-stepping scheme.
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Empirical order of convergence. Schatzman–Paoli’s
time–stepping scheme
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Figure: Empirical order of convergence of the Schatzman-Paoli’s time-stepping
scheme.
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time–stepping scheme
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INRIA Rhône–Alpes

Introduction & Motivations

Outline

Lagrangian dynamical
systems with unilateral
constraints and friction

Numerical time–integration
schemes

Adaptive schemes

Local error estimates for the
Moreau’s Time–stepping
scheme

Adaptive time–step
strategies

A control based on violation

Higher Order Schemes

Splitting based Schemes

Conclusions & Perspectives

The Siconos Platform

References

Local error estimates for the Moreau’s time–stepping

Notation

e = x(tk + h) − xk+1 =

»
ev

eq

–
=

»
v+(tk + h) − vk+1

q(tk + h) − qk+1

–
(46)
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One impact at time t∗ ∈ (tk , tk+1]

Assumption

di = pδt∗ , or equivalently dI = Pδt∗ ,with P = G(t∗)p. (47)

Notation

I = {α, α ∈ {1..m}} (48)

I∗ = {α ∈ I,Pα > 0,Uα,+(t∗) − Uα,−(t∗) = −(1 + e)Uα,−(t∗)} (49)

Ip = {α ∈ I,Pα
k+1 > 0,Uα

k+1 − Uα
k = −(1 + e)Uα

k } (50)

Lemma
Let us assume that we have only one elastic impact at time t∗ ∈ (tk , tk+1]
without persistent contact, i.e. , di = pδt∗ .

1. If I∗ = Ip, then the local order of consistency of the scheme is given
by

ev = Kvh + O(h2)
eq = Kqh + O(h2)

(51)

2. If I∗ 6= Ip, then the local order of consistency of the scheme is given
by

ev = Kv + O(h)
eq = Kqh + O(h2)

(52)
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Smooth Lagrange multiplier in persistent contact without
impact in (tk , tk+1]

Assumption

di = λ(t)dt, (53)

or equivalently
dI = Λ(t)dt,with Λ(t) = G(t)λ(t). (54)

Notation

IΛ(t) = {α ∈ I,Λα(t) > 0,Uα,+(t) = Uα,−(t) = 0} (55)

IΛ,k+1 = {α ∈ I,Λα
k+1 > 0,Uα

k+1 = Uα
k = 0} (56)

Lemma
Assuming that IΛ(t) = IΛ,k+1 for all t ∈ (tk , tk+1]. The local order of
consistency of the scheme is one that is

ev = Kh2 + O(h3)
eq = Kqh2 + O(h3)

(57)
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Local error estimates for the Moreau’s time–stepping

Other cases

◮ One impact and smooth Lagrange multiplier The same result holds
as in the first Lemma.

◮ losing contact event (take–off) without impact The order of the
time–integration scheme depends on the regularity of the contact
forces (at least continuous).

◮ Finite accumulation The order of the time–integration should be at
least 0. Idea of the proof : use the fact that the velocity vanishes and
is of bounded variations
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Practical error estimates for the Moreau’s time–stepping

Order “0” case
Standard error estimates do not apply for Order 0.
We propose to extend it to the order 0 of consistency by assuming that
the constant can be evaluated by

C =
2(e1 − e1/2)

h
(58)

and the local error estimate by

e1/2 = 2(x1/2 − x1) + O(h2) (59)

The adaptive time–step control exposed for smooth ODE is then apply
directly.
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Order “0” time–step adjustment for the Moreau’s
time–stepping
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(a) The bouncing ball example

Figure: Precision Work diagram for the Moreau’s time-stepping scheme. Order 0
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Sizing the error in the violation of constraints

The violation of constraints is sized by the following rule:

eviolation = ‖min(0, g(q)) ◦ invtol‖∞ (60)

Assuming that the scheme is of order 1 almost everywhere in smooth
phase and may be controlled by eviolation when an nonsmooth vent
occurs, the step size adjustment is implemented by the means of the
following error estimation

error = max(eviolation, ‖ek ◦ invtol‖∞) (61)
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Results on two academic test examples
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Figure: Precision Work diagram for the Moreau’s time-stepping scheme. Order 0 +
violation error
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Results on two academic test examples
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Higher Order Time–stepping schemes

Background
Work of Mannshardt (1978) on time–integration schemes of any order for
ODEs with discontinuities (with tranversality assumption)

Principle

◮ Let us assume only one event per time–step at instants t∗.

◮ Choose any ODE solvers of order p

◮ Perform a rough location of the event inside the time step of length h
Find an interval [ta, tb ] such that

t∗ ∈ [ta, tb] and |tb − ta| = Chp+1 + O(hp+2) (62)

Dichotomy, Newton, Local Interpolants, Dense output,. . .

◮ Perform an integration on [tk , ta] with the ODE solver of order p

◮ Perform an integration on [ta, tb] with Moreau’s time–stepping
scheme

◮ Perform an integration on [tb , tk+1] with the ODE solver of order p
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Results on the linear oscillator
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 (Moreau DPRK56)

(a) The linear oscillator example

Figure: Precision Work diagram for the Moreau’s time-stepping scheme.
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Higher Order Time–stepping schemes

Finite accumulation

◮ Repeat the whole process on the remaining part of the interval [tb, tk ]

◮ By induction, repeat this process up to the end of the original time
step.
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Results on the Bouncing Ball
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(a) The Bouncing Ball example

Figure: Precision Work diagram for the Moreau’s time-stepping scheme.
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INRIA Rhône–Alpes

Introduction & Motivations

Outline

Lagrangian dynamical
systems with unilateral
constraints and friction

Numerical time–integration
schemes

Adaptive schemes

Higher Order Schemes

Splitting based Schemes

Principle

Conclusions & Perspectives

The Siconos Platform

References

Splitting–based methods.

Principle for smooth ODEs
Let us consider a smooth ODE which can be written as

ẋ(t) = f (x , t) + g(x , t) (63)

A example of splitting–based method is given by the following procedure

1. Perform the integration of f on [tk , tk+1] to obtain x̃(tk+1) that is

x̃(tk+1) = x(tk ) +

Z tk+1

tk

f (x , t) dt (64)

2. Perform the integration of g on [tk , tk+1] with initial value x̃(tk+1) to
obtain x̂(tk+1) that is

x̂(tk+1) = x̃(tk+1) +

Z tk+1

tk

g(x , t) dt (65)

Properties

◮ x(tk + 1) 6= x̂(tk+1) is the general case. (except special linear case,
constant dynamics, . . . )

◮ x̂(tk+1) → x(tk+1) when tk+1 → tk
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Splitting–based methods.

Splitting–based for Moreau scheme without continuous contact
forces

◮ The first part is

8
><
>:

M(q)v̇ = F (t, q, v),

q̇ = v ,

q(tk ) = qk , v(tk ) = vk

(66)

yielding to the approximations q1 = q(tk+1) and v1 = v(tk+1) which
can integrated by any smooth ODE solvers.

◮ The second one is given by

8
>>>>>><
>>>>>>:

M(q)v̇ = G(q)λ,

q̇ = 0,

y = g(q)

−λ ∈ ∂ψTIR+
(y)(ẏ(t+) + eẏ(t−))

q(tk ) = q1; v(tk ) = v1;

(67)

and leads to the approximation qk+1 = q(tk+1) andqk+1 = q(tk+1).
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Splitting–based methods with constants time–step.
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(a) The bouncing ball example

Figure: Empirical order of convergence of the Splitting RKF45 time-stepping scheme
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Splitting–based methods with constants time–step.

 0.001

 0.01

 0.1

 1

 1e-05  0.0001  0.001  0.01

E
rr

or
 (

lo
g 

sc
al

e)

Step (log scale)

Splitting RKF45 Order of convergence. Linear Oscillator Example

Constant time-steps (MoreauTS)
Constant time-steps (Splitting RKF45)

(a) The linear oscillator example

Figure: Empirical order of convergence of the Splitting RKF45 time-stepping scheme
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Splitting–based methods with adaptive time–step.
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Figure: Empirical order of convergence of the Splitting RKF45 time-stepping scheme
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Splitting–based methods.

Splitting–based for Moreau scheme with continuous contact
forces

◮ The first part is

8
>>>>>><
>>>>>>:

M(q)v̇ = F (t, q, v) + r(t),

q̇ = v ,

y = g(q)

−r(t) ∈ ∂ψTIR+
(y)(ẏ (t))

q(tk ) = qk , v(tk ) = vk

(68)

yielding to the approximations q1 = q(tk+1) and v1 = v(tk+1) which
can integrated by any smooth ODE solvers.

◮ The second one is given by

8
>>>>>><
>>>>>>:

M(q)v̇ = G(q)λ,

q̇ = 0,

y = g(q)

−λ ∈ ∂ψTIR+
(y)(ẏ(t+) + eẏ(t−))

q(tk ) = q1; v(tk ) = v1;

(69)

and leads to the approximation qk+1 = q(tk+1) andqk+1 = q(tk+1).
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Conclusions

Adaptive time–step strategies

◮ Higher resolution schemes

◮ Work with finite accumulation of events

Higher order schemes

◮ Schemes of any orders

◮ Work with finite accumulation of events

Splitting based methods

◮ Higher resolution schemes

◮ Work with finite accumulation of events
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Perspectives

◮ Theoretical works on orders and practical error estimations

◮ Adaptive time–step strategies on the higher order time–stepping
schemes.

◮ Improve the pre–detection process of the event and the order of
discontinuity

◮ Test on nonsmooth and nonlinear mechanical systems.

◮ Adapt the schemes with a step without external forces when the
Moreau’s scheme is used

◮ Other types of time–stepping schemes . . .
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Overview of the Siconos Platform

Context
The Siconos Platform is one of the main outcome of the Siconos EU
project.

Functionalities
Modeling, simulation, (analysis and control) of Non Smooth Dynamical
Systems.

Constraints and Requirements

◮ various applications fields (Mechanics, Electronics . . . ) and
corresponding modeling habits and formulations

◮ various mathematical and numerical tools

◮ various skills in computer science (from the high perfomance
computing to the Matlab users)

◮ links and interfaces with existing softwares:
◮ low-level numerical libraries (BLAS, LAPACK, ODEPACK, . . . )
◮ Matlab or Scilab dedicated user toolbox
◮ simulation tools for an application field: Scicos, Simulink, FEM and DEM

Sofware (LMGC90, . . . ), Hybrid Modeling Language (Modelica, . . . )
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Siconos components diagram

SICONOS/Kernel

SICONOS/Front−End
Interface (Python, Scilab ...) 

program
C++

User
Plug−in

SICONOS/Numerics
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Siconos components diagram

SICONOS/Kernel

SICONOS/Front−End
Interface (Python, Scilab ...) 

program
C++

User
Plug−in

SICONOS/Numerics

◮ SICONOS/Numerics API C:
shared dynamic library that provides low-level solvers and algorithms
in C and fortran.
Sources: NSSpack (LCP, Friction ...), odepack (Lsodar ...).

◮ SICONOS/Kernel: API C++: compiled command files with high
level methods (C++ Constructors and/or XML file data loading.)
⇒ from simulation → run() to DynamicalSystem → computeFext(t)

◮ SICONOS/Frond-End: “user-friendly” interface providing a more
interactive way of using the platform.

◮ API C++ with interactive environment Python scripting (Swig wrapper).
◮ API C: Scilab and Matlab interfaces.
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Modeling Principle:

 

Non Smooth Dynamical system

Dynamical system

ẋ = f (x , t) + r
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Modeling Principle:

 

Non Smooth Dynamical system

Dynamical system

ẋ = f (x , t) + r

Non Smooth Law

0 6 y ⊥ λ > 0
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Modeling Principle:

 

Non Smooth Dynamical system

Dynamical system

ẋ = f (x , t) + r

Non Smooth Law

0 6 y ⊥ λ > 0

y
=

h
(x

)r
=

g
(λ

)

Input/Output Relation
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Modeling Principle:

 

Non Smooth Dynamical system

Dynamical system

ẋ = f (x , t) + r

Non Smooth Law

0 6 y ⊥ λ > 0

y
=

h
(x

)

r
=

g
(λ

)

Input/Output Relation

Non Smooth Interaction
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Kernel Modeling Part

Siconos Non Smooth Dynamical System:

Interaction

DS

DS

DS

DS

DS

NSDS

◮ Dynamical System: a set of ODEs

◮ Interaction: a set of relations (ie
constraints) and a non-smooth law
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Kernel Modeling Part

Siconos Non Smooth Dynamical System:

Interaction

DS

DS

DS

DS

DS

NSDS

◮ Dynamical System: a set of ODEs

◮ Interaction: a set of relations (ie
constraints) and a non-smooth law

◮ Topology: link with the simulation,
handles relative degrees, index sets
...

Simplified Modeling Tools class diagram:

NonSmoothDynamicalSystem

UnitaryRelation

DynamicalSystem

NonSmoothLaw

(0,M)

Relation

(1,N)

Interaction

1

(1,P)

1
Topology



Nonsmooth dynamical
systems. Numerical

Time–integration schemes
and the Siconos platform

Vincent Acary

vincent.acary@inrialpes.fr
INRIA Rhône–Alpes
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Dynamical Systems in Siconos/Kernel

DynamicalSystem LagrangianDSLinearDS

LagrangianLinearTIDSLinearTIDS

◮ Parent Class DynamicalSystem

ẋ = f (x , ẋ , t) + T (x)u(x , t) + r
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Dynamical Systems in Siconos/Kernel

DynamicalSystem LagrangianDSLinearDS

LagrangianLinearTIDSLinearTIDS

◮ Parent Class DynamicalSystem

ẋ = f (x , ẋ , t) + T (x)u(x , t) + r

◮ Derived Classes
◮ LinearDS Linear Dynamical Systems

ẋ = A(t)x + Tu(t) + b(t) + r

◮ LagrangianDS Lagrangian Dynamical Systems

M(q)q̈ + NNL(q, q̇) + Fint(q̇, q, t) = Fext(t) + T (q)u(q, t) + p

◮ LagrangianLinearTIDS Lagrangian Linear Time Invariant Systems

Mq̈ + Cq̇ + Kq = Fext (t) + Tu(t) + p

Note: all operators ( f (x , t), M(q), ...) can be set either as matrices
(when constant) or with a user-defined external function (plug-in).
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Relations

Relation LagrangianR LagrangianLinearRLinearTIR

◮ Parent Class Relation

y = h(x , t, ...) , r = g(λ, t, ...)
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Relations

Relation LagrangianR LagrangianLinearRLinearTIR

◮ Parent Class Relation

y = h(x , t, ...) , r = g(λ, t, ...)

◮ Derived Classes:
◮ LinearTIR Linear Time Invariant Relation

y = Cx + Fu + Dλ + e, r = Bλ

◮ LagrangianR Lagrangian Relation

ẏ = H(q, t, . . .)q̇, p = H t(q, t, . . .)λ

◮ LagrangianLinearR Lagrangian Linear Relation

ẏ = Hq̇ + b, p = H tλ
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Non Smooth laws

NonSmoothLawNewtonImpactFrictionNSL

NewtonImpactNSL

ComplementarityConditionNSL

RelayNSL

◮ Parent Class NonSmoothLaw
◮ Derived Classes

◮ ComplementarityConditionNSL Complementarity condition or unilateral
contact

0 6 y ⊥ λ > 0

◮ Relay condition.
(

ẏ = 0, |λ| 6 1

ẏ 6= 0, λ = sign(y)

◮ NewtonImpactLawNSL Newton impact Law.

if y(t) = 0, 0 6 ẏ(t+) + eẏ(t−) ⊥ λ > 0

◮ NewtonImpactFrictionNSL Newton impact and Friction (Coulomb) Law.
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C++ description of a Model

◮ Dynamical Systems definition:

DynamicalSystem * DS1 = new
LagrangianLinearTIDS(nDof,q0,v0,Mass);
DS1→setComputeFExtFunction("BallPlugin.so", "ballFExt");
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C++ description of a Model

◮ Dynamical Systems definition:

DynamicalSystem * DS1 = new
LagrangianLinearTIDS(nDof,q0,v0,Mass);
DS1→setComputeFExtFunction("BallPlugin.so", "ballFExt");

◮ Interactions definition: non smooth law and relation:

NonSmoothLaw * nslaw = new NewtonImpactNSL(e);
Relation * relation = new LagrangianLinearR(H,b);

Interaction * inter = new Interaction(name, listOfDS,dim, nslaw,

relation);
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C++ description of a Model

◮ Dynamical Systems definition:

DynamicalSystem * DS1 = new
LagrangianLinearTIDS(nDof,q0,v0,Mass);
DS1→setComputeFExtFunction("BallPlugin.so", "ballFExt");

◮ Interactions definition: non smooth law and relation:

NonSmoothLaw * nslaw = new NewtonImpactNSL(e);
Relation * relation = new LagrangianLinearR(H,b);

Interaction * inter = new Interaction(name, listOfDS,dim, nslaw,

relation);

◮ Non Smooth Dynamical System and Model
NonSmoothDynamicalSystem * nsds = new
NonSmoothDynamicalSystem(allDS, allInteractions);
Model * theModel = new Model(t0,T);

theModel→setNonSmoothDynamicalSystemPtr(nsds);
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Simulation tools in Siconos/Kernel

Simulation

OneStepNSProblems Solver

TimeDiscretisation

OneStepIntegrator
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Simulation tools in Siconos/Kernel

Simulation

OneStepNSProblems Solver

TimeDiscretisation

OneStepIntegrator

Simulation description in C++ input file:

Simulation* s = new TimeStepping(theModel);
TimeDiscretisation * t = new TimeDiscretisation(timeStep,s);
OneStepIntegrator * OSI = new Moreau(listOfDS,theta,s);

OneStepNSProblem * osnspb = new LCP(s, "LCP",Lemke,parameters);
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Simulation tools in Siconos/Kernel

Simulation

OneStepNSProblems Solver

TimeDiscretisation

OneStepIntegrator

Simulation description in C++ input file:

Simulation* s = new TimeStepping(theModel);
TimeDiscretisation * t = new TimeDiscretisation(timeStep,s);
OneStepIntegrator * OSI = new Moreau(listOfDS,theta,s);

OneStepNSProblem * osnspb = new LCP(s, "LCP",Lemke,parameters);

Unitary Relation and Index Sets
UR: y i = h(q, ...).
Index Sets: set of Unitary Relations (UR).

◮ I0 = {URα} all unilateral constraints in the system, ie all the
potential interactions/relations of the systems.

◮ Ii = {URα, α ∈ Ii−1, y
(i−1) = 0} ⊂ Ii−1
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INRIA Rhône–Alpes

Introduction & Motivations

Outline

Lagrangian dynamical
systems with unilateral
constraints and friction

Numerical time–integration
schemes

Adaptive schemes

Higher Order Schemes

Splitting based Schemes

Conclusions & Perspectives

The Siconos Platform

Introduction

Modeling

Simulation

Examples

Documentation and
Distribution

References

Simulation tools in Siconos/Kernel

Simulation

OneStepNSProblems Solver

TimeDiscretisation

OneStepIntegrator

TimeStepping

LCPFrictionContactMoreau
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Simulation tools in Siconos/Kernel

Simulation

OneStepNSProblems Solver

TimeDiscretisation

OneStepIntegrator

TimeStepping

LCPFrictionContactMoreau

Solver

TimeDiscretisation

OneStepIntegrator

Simulation

OneStepNSProblems

LCP

EventDriven

LsodarEvent

EventsManager
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OneStepIntegrator :

◮ Moreau: Moreau’s Time-stepping integrator

◮ Lsodar: Numerical integration scheme based on the Livermore Solver
for Ordinary Differential Equations with root finding.

OnestepNSproblem: Numerical one step non smooth problem formulation
and solver.

◮ LCP Linear Complementarity Problem

(
w = Mz + q

0 6 w ⊥ z > 0

◮ FrictionContact2D(3D) Two(three)-dimensional contact friction
problem

◮ QP Quadratic programming problem

(
min 1

2
zTQz + zTp

z > 0

◮ Relay
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Model: Lagrangian Linear Time Invariant Dynamical Systems with
Lagrangian Linear Relations, Newton Impact Law.
Simulation: Moreau’s Time Stepping or Event Driven.

Bouncing Ball
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A 4 diodes bridge wave rectifier.

Model: Linear Dynamical System with Linear Relations, Complementarity
Condition Non Smooth Law.
Simulation: Moreau’s Time Stepping

-10
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-2
 0
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 10

V

capacitor voltage , SMASH   TRAP 1us
capacitor voltage , SICONOS TRAP 1us

-0.08
-0.06
-0.04
-0.02

 0
 0.02
 0.04
 0.06
 0.08
 0.1

A

inductor current , SMASH   TRAP 1us
inductor current , SICONOS TRAP 1us

-10
-8
-6
-4
-2
 0
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 10

V

diode R1 cathod pot. , SMASH   TRAP 1us
diode R1 cathod pot. , SICONOS TRAP 1us
diode F2 anode pot. ,  SMASH   TRAP 1us

diode F2 anode pot. ,  SICONOS TRAP 1us

-0.001
 0

 0.001
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 0.003
 0.004
 0.005
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 0.007
 0.008
 0.009
 0.01

 0  0.001  0.002  0.003  0.004  0.005  0.006

A

time in s

resistor current , SMASH   TRAP 1us
resistor current , SICONOS TRAP 1us

Comparison between the SICONOS Platform (Non Smooth LCS model)
and SPICE simulator (Smooth Diode model).
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Woodpecker toy (sample from Michael Moeller (CR10))

Model: Lagrangian Linear Dynamical System, Lagrangian Linear
Relations, Newton impact-friction law.
Simulation: Moreau’s Time Stepping
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A Robotic Arm (Pa10)

Model: Lagrangian Non Linear Dynamical System with Lagrangian Non
Linear Relations, Newton impact.
Simulation: Moreau’s Time Stepping
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Help and Documentation

◮ Doxygen tools for automatic documentation in Numerics and Kernel

◮ Users, developers and theoretical manuals (in progress ...)

◮ Web pages, Bug tracker, forum ... on Gforge.

◮ Samples library as templates.

Diffusion

◮ The SICONOS platform is distributed under GPL licence.
◮ Visit the Gforge Web site for

◮ Documentations
◮ Mailing lists
◮ Downloads
◮ Bug tracker
◮ Contributing, . . .

http://gforge.inria.fr/projects/siconos/
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Thank you for your attention.



Nonsmooth dynamical
systems. Numerical

Time–integration schemes
and the Siconos platform

Vincent Acary

vincent.acary@inrialpes.fr
INRIA Rhône–Alpes
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