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The 3D frictional contact problem

Signorini condition and Coulomb’s friction

Signorini’s condition and Coulomb’s friction

Body A

Body B

CA

N

T1

T2

CB

gN

I gap function gN = (CB − CA)N.

I reaction forces velocities

r = rNN+rT, with rN ∈ IR and rT ∈ IR2.

u = uNN+uT, with uN ∈ IR and uT ∈ IR2.

I Signorini conditions

position level :0 6 gN ⊥ rN > 0.

velocity level :

{
0 6 uN ⊥ rN > 0 if gN 6 0
rN = 0 otherwise.
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The 3D frictional contact problem

Signorini condition and Coulomb’s friction

Signorini’s condition and Coulomb’s friction

Modeling assumption
Let µ be the coefficient of friction. Let us define the Coulomb friction cone K which is
chosen as the isotropic second order cone

K = {r ∈ IR3 | ‖rT‖ 6 µrn}. (1)

The Coulomb friction states

I for the sticking case that
uT = 0, r ∈ K (2)

I and for the sliding case that

uT 6= 0, r ∈ ∂K ,∃α > 0, rT = −αuT. (3)

Disjunctive formulation of the frictional contact behavior
r = 0 if gN > 0 (no contact)
r = 0, uN > 0 if gN 6 0 (take–off)
r ∈ K , u = 0 if gN 6 0 (sticking)
r ∈ ∂K , uN = 0, ∃α > 0, uT = −αrT if gN 6 0 (sliding)

(4)
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The 3D frictional contact problem

Signorini condition and Coulomb’s friction

Signorini’s condition and Coulomb’s friction

Second Order Cone Complementarity (SOCCP) formulation
[De Saxcé(1992)]

I Modified relative velocity û ∈ IR3 defined by

û = u + µ‖uT‖N. (5)

I Second-Order Cone Complementarity Problem (SOCCP)

K? 3 û ⊥ r ∈ K (6)

if gN 6 0 and r = 0 otherwise. The set K? is the dual convex cone to K defined
by

K? = {u ∈ IR3 | r>u > 0, for all r ∈ K}. (7)
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The 3D frictional contact problem

Signorini condition and Coulomb’s friction

Signorini’s condition and Coulomb’s friction
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Figure: Coulomb’s friction and the modified velocity û. The sliding case.
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The 3D frictional contact problem

3D frictional contact problems

3D frictional contact problem

Multiple contact notation
For each contact α ∈ {1, . . . nc}, we have

I the local velocity : uα ∈ IR3, and

u = [[uα]>, α = 1 . . . nc ]>

I the local reaction vector rα ∈ IR3

r = [[rα]>, α = 1 . . . nc ]>

I the local Coulomb cone

Kα = {rα, ‖rαT ‖ 6 µα|rαN |} ⊂ IR3

and the set K is the cartesian product of Coulomb’s friction cone at each
contact, that

K =
∏

α=1...nc

Kα (8)

and K? is dual.
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The 3D frictional contact problem

3D frictional contact problems

3D frictional contact problems

Problem 1 (General discrete frictional contact problem)
Given

I a symmetric positive definite matrix M ∈ IRn×n,

I a vector f ∈ IRn,

I a matrix H ∈ IRn×m,

I a vector w ∈ IRm,

I a vector of coefficients of friction µ ∈ IRnc ,

find three vectors v ∈ IRn, u ∈ IRm and r ∈ IRm, denoted by FC/I(M,H, f ,w , µ) such
that 

Mv = Hr + f

u = H>v + w

û = u + g(u)

K? 3 û ⊥ r ∈ K

(9)

with g(u) = [[µα‖uαT ‖Nα]>, α = 1 . . . nc ]>.
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The 3D frictional contact problem

3D frictional contact problems

3D frictional contact problems

Problem 2 (Reduced discrete frictional contact problem)
Given

I a symmetric positive semi–definite matrix W ∈ IRm×m,

I a vector q ∈ IRm,

I a vector µ ∈ IRnc of coefficients of friction,

find two vectors u ∈ IRm and r ∈ IRm, denoted by FC/II(W , q, µ) such that
u = Wr + q

û = u + g(u)

K? 3 û ⊥ r ∈ K

(10)

with g(u) = [[µα‖uαT ‖Nα]>, α = 1 . . . nc ]>.

Relation with the general problem
W = H>M−1H and q = H>M−1f + w .
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The 3D frictional contact problem

From the mathematical programming point of view

From the mathematical programming point of view

Nonmonotone and nonsmooth problem

K? 3Wr + q + g(Wr + q) ⊥ r ∈ K (11)

Possible reformulation

I Variational inequality or normal cone inclusion

− (Wr + q + g(Wr + q))
∆
= −F (r) ∈ NK (r). (12)

I Nonsmooth equations G(r) = 0
• The natural map F nat associated with the VI (12) F nat(z) = z − PX (z − F (z)).
• Variants of this map (Alart-Curnier formulation, . . . )
• one of the SOCCP-functions. (Fisher-Bursmeister function)

I and many other ...
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Numerical solution procedure.

VI based methods

VI based methods

Standard methods

I Basic fixed point iterations with projection [FP-VI]

zk+1 ← PX(zk − ρk F(zk))

I Extragradient method [EG-VI]

zk+1 ← PX(zk − ρk F(PX(zk − ρkF(zk))))

With fixed ρ, we get the Uzawa Algorithm of De Sacxé-Feng [FP-DS]

Self-adaptive procedure for ρk
[UPK]

Armijo-like : mk ∈ IN such that

{
ρk = ρ2mk ,

ρk‖F (zk )− F (z̄k )‖ 6 ‖zk − z̄k‖
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Numerical solution procedure.

Nonsmooth Equations based methods

Nonsmooth Equations based methods

Nonsmooth Newton on G (z) = 0

zk+1 = zk − Φ−1(zk )(G(zk )), Φ(zk ) ∈ ∂G(zk )

I Alart–Curnier Formulation [Alart and Curnier(1991)] [NSN-AC]{
rN − PIRnc

+
(rN − ρNuN) = 0,

rT − PD(µ,rN,++ρuN)(rT − ρTuT) = 0,

I Jean–Moreau Formulation [NSN-MJ]{
rN − PIRnc

+
(rN − ρNuN) = 0,

rT − PD(µ,rN,+)(rT − ρTuT) = 0,

I Direct normal map reformulation [NSN-NM]

r − PK (r − ρ(u + g(u))) = 0

I Extension of Fischer-Burmeister function to SOCCP [NSN-FB]

φFB(x , y) = x + y − (x2 + y2)1/2

with Jordan product and square root

line-search procedures

I GoldsteinPrice line search [NSN-*-GP]

I Armijo line search [NSN-*-A]

Estimation of ρ, ρN, ρT parameters
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Numerical solution procedure.

Matrix block–splitting and projection based algorithms

Matrix block-splitting and projection based algorithms
[Moreau(1994), Jean and Touzot(1988)]

Block splitting algorithm with W αα ∈ IR3 [NSGS-*]

uαi+1 −WααPαi+1 = qα +
∑
β<α

Wαβrβi+1 +
∑
β>α

Wαβrβi

ûαi+1 =
[
uα

N,i+1 + µα ||uα
T,i+1||, u

α
T,i+1

]T
Kα,∗ 3 ûαi+1 ⊥ rαi+1 ∈ Kα

(13)

for all α ∈ {1 . . .m}.

Over-Relaxation [PSOR-*]

One contact point problem

I closed form solutions

I Any solver listed before.
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Numerical solution procedure.

Proximal point algorithms

Proximal point technique [Moreau(1962), Moreau(1965), Rockafellar(1976)]

Principle
We want to solve

min
x

f (x) (14)

We define the approximation problem for a given xk

min
x

f (x) + ρ‖x − xk‖2 (15)

with the optimal point x?.

x?
∆
= proxf ,ρ(xk ) (16)

Proximal point algorithm [PPA-*]

xk+1 = proxf ,ρk (xk )

Special case for solving G (x) = 0

f (x) =
1

2
G>(x)G(x)
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Numerical solution procedure.

Optimization based approach

Optimization based methods

I Alternating optimization problems (Panagiotopoulos et al.) [PANA-*]

I Successive approximation with Tresca friction (Haslinger et al.) [TRESCA-*]
θ = h(rN)

min
1

2
r>Wr + r>q

s.t. r ∈ C(µ, θ)

(17)

where C(µ, θ) is the cylinder of radius µθ.

I Fixed point on the norm of the tangential velocity [A., Cadoux, Lemaréchal,
Malick(2011)] [ACLM-*].

s = ‖uT‖

min
1

2
r>Wr + r>(q + αs)

s.t. r ∈ K

(18)

Fixed point or Newton Method on F (s) = s
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Numerical solution procedure.

Siconos/Numerics

Siconos/Numerics

Siconos
Open source software for modelling and simulation of nonsmooth systems

Siconos/Numerics
Collection of C routines to solve FC3D problems in dense, sparse or block sparse
versions:

I VI solvers: Fixed point, Extra-Gradient, Uzawa

I VI based projection/splitting algorithm: NSGS, PSOR

I Nonsmooth Newton technique: Alart-Curnier, Jean-Moreau, Natural map,
Ficher-Bursmeister

I Proximal point algorithm

I Optimization based solvers. Panagiotopoulos, Tresca, SOCQP

I . . .

Collection of routines for optimization and complementarity problems

I LCP solvers (iterative and pivoting (Lemke))

I Standard QP solvers (Projected Gradient (Calamai & Moré), Projected CG (Moré
& Toraldo), active set technique)

I linear and nonlinear programming solvers.

http://siconos.gforge.inria.fr

use and contribute ...
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Preliminary Comparisons

Measuring error

Measuring errors

Full error criteria

error =
‖F nat

vi-2(r)‖
‖q‖

. (19)

Cheap error

errorcheap =
‖rk+1 − rk‖
‖rk‖

. (20)

The tolerance of solver is then self-adapted in the loop to meet the required tolerance
based on the error given by (19).
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Preliminary Comparisons

Performance profiles

Performance profiles [Dolan and Moré(2002)]

I Given a set of problems P
I Given a set of solvers S
I A performance measure for each problem with a solver tp,s (cpu time, flops, ...)

I Compute the performance ratio

τp,s =
tp,s

min
s∈S

tp,s
> 1 (21)

I Compute the performance profile ρs(τ) : [1,+∞]→ [0, 1] for each solver s ∈ S

ρs(τ) =
1

|P|
∣∣{p ∈ P | τp,s 6 τ}

∣∣ (22)

The value of ρs(1) is the probability that the solver s will win over the rest of the
solvers.

Preliminary Comparisons – 17/29



Formulations and extensive comparisons of 3D frictional contact solvers based on performance profiles

Preliminary Comparisons

Performance profiles

(a) Cubes H8 (b) LowWall FEM (c) Aqueduct PR (d) Bridge PR

(e) 100 PR Periobox (f) 945 SP Box PL (g) Capsules (h) Chain

(i) KaplasTower (j) BoxesStack (k) Chute 1000, Chute 4000,
Chute local problems

Figure: Illustrations of the FClib test problems
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Preliminary Comparisons

Performance profiles

Test set code
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ra
n
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(W

)

Cubes H8 2 LMGC90 0.3 15 162 [3 : 5] [0.02 : 0.09] 1

Cubes H8 5 LMGC90 0.3 50 1296 [17 : 36] [0.02 : 0.09] 1

Cubes H8 20 LMGC90 0.3 50 55566 [361 : 388] [0.019 : 0.021] 1

LowWall FEM LMGC90 0.83 50 {7212} [624 : 688] [0.28 : 0.29] 1

Aqueduct PR LMGC90 0.8 10 {1932} [4337 : 4811] [6.81 : 7.47] [6.80 : 7.46]

Bridge PR LMGC90 0.9 50 {138} [70 : 108] [1.5 : 2.3] [2.27 : 2.45]

100 PR Periobox LMGC90 0.8 106 {606} [14 : 578] [0.2 : 3] [1.76 : 3.215]

945 SP Box PL LMGC90 0.8 60 {5700} [2322 : 5037] [1.22 : 2.65] [1.0 : 2.66]

Capsules Siconos 0.7 249 [96:600] [17 : 304] [0.53 : 1.52] [1.08 : 1.55]

Chain Siconos 0.3 242 {60} [8 : 28] [0.5 : 1.3] [1.05 : 1.6]

KaplasTower Siconos 0.7 201 [72 : 792] [48 : 933] [3.0 : 3.6] [2.0 : 3.53]

BoxesStack Siconos 0.7 255 [6 : 300] [1 : 200] [1.86 : 2.00] [1.875 : 2.0]

Chute 1000 Siconos 1.0 156 [276 : 5508] [74 : 5056] [0.69 : 2.95] [1.0 : 2.95]

Chute 4000 Siconos 1.0 40 [17280 : 20034] [15965 : 19795] [2.51 : 3.06] –

Chute local problems Siconos 1.0 834 3 1 1 1

Table: Description of the test sets of FCLib library (v1.0)
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Preliminary Comparisons

Performance profiles

Parameters of the simulation campaign
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Cubes H8 ? 10−08 100 1.73 2.13 4.83−03 5.78−03 0

Cubes H8 ? II 10−04 100 0.92 1.06 2.66−03 2.83−03 0

LowWall FEM 10−08 400 13.1 3.50 1.91−02 5.09−03 0

LowWall FEM II 10−04 400 14.8 2.85 2.16−02 4.54−03 0

Aqueduct PR 10−04 200 5.80 6.36 4.90−04 3.03−04 0

Bridge PR 10−08 400 10.3 12.9 1.23−01 2.88−01 0

Bridge PR II 10−04 100 0.048 0.038 1.30−03 1.42−03 0

100 PR Periobox 10−04 100 0.064 0.062 1.56−04 1.22−04 0

945 SP Box PL 10−04 100 3.20 1.71 6.45−04 3.36−04 0

Capsules 10−08 50 1.46.10−02 1.74.10−02 5.67−05 6.26−05 0

Chain 10−08 50 6.19.10−04 3.68.10−04 3.15.10−05 1.46.10−05 0

KaplasTower 10−08 200 1.27.10−01 3.75.10−01 1.84.10−04 4.57.10−04 0

KaplasTower II 10−04 100 2.84.10−02 1.51.10−01 3.39.10−05 1.84.10−04 0

BoxesStack 10−08 100 3.42.10−02 8.87.10−02 3.24.10−04 9.77.10−04 0

Chute 1000 10−04 200 2.62 3.06 6.76−04 6.58−04 0

Chute 4000 10−04 200 10.52 7.88 5.71−04 4.07−04 0

Chute local problems 10−08 10 1.80.10−04 1.57.10−05 1.80.10−04 1.57.10−05 0
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Preliminary Comparisons

Performance profiles

Parameters of the simulation campaign

I More than 2500 problems

I Around 30 solvers with their variants

I More than 27000 runs between few seconds up to 400s.
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Preliminary Comparisons

Performance profiles

Comparison of numerical methods FP-DS, FP-VI-? and FP-EG-?
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Preliminary Comparisons

Performance profiles

Influence of the local solver in NSGS-? algorithms.
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Figure: Influence of the local solver in NSGS-? algorithms.
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Preliminary Comparisons

Performance profiles

Comparison of NSN-? algorithms.
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Preliminary Comparisons

Performance profiles

Comparison of the optimization based solvers
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Figure: Comparison of the optimization based solvers
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Preliminary Comparisons

Performance profiles

Comparisons by families of solvers
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Conclusions

1. A bunch of articles in the literature

2. No “Swiss–knife” solution : choose efficiency OR robustness

3. Newton–based solvers solve efficiently some problems, but robustness issues

4. First order iterative methods (VI,NSGS,PSOR) solves all the problems but very
slowly

5. The rank of the H matrix (ratio number of contacts unknows/number of d.o.f)
plays an important role on the robustness

6. Optimisation-based and proximal-point algorithm solvers are interesting but it is
difficult to forecast their efficiency.

Perspectives

1. Develop new algorithm and compare other algorithm in the literature.
(interior point techniques, issues with standard optimization software.)

2. Improve the robustness of Newton solvers and accelerate first-order method

3. Complete the collection of benchmarks Ü FCLIB
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FCLIB : a collection of discrete 3D Frictional Contact (FC) problems

Our inspiration: MCPLIB or CUTEst

What is FCLIB ?

I A open source collection of Frictional Contact (FC) problems stored in a specific
HDF5 format

I A open source light implementation of Input/Output functions in C Language to
read and write problems (Python and Matlab coming soon)

Goals of the project
Provide a standard framework for testing available and new algorithms for solving
discrete frictional contact problems share common formulations of problems in order
to exchange data

Call for contribution
http://fclib.gforge.inria.fr
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All the results may be found in [Acary et al.(2018)Acary, Brémond, and Huber]

On solving frictional contact problems: formulations and comparisons of numerical
methods. Acary, Brémond, Huber. Advanced Topics in Nonsmooth Dynamics, Acary,
V. and Brüls. O. and Leine, R. (eds). Springer Verlag. 2018

Thank you for your attention.

Thank to the collaborators for stimulating discussions:

Pierre Alart, Paul Armand, Florent Cadoux, Frederic Dubois,
Claude Lemareéchal, Jerome Malick and Mathieu Renouf

Conclusions & Perspectives – 29/29



Formulations and extensive comparisons of 3D frictional contact solvers based on performance profiles

Conclusions & Perspectives

FCLIB : a collection of discrete 3D Frictional Contact (FC) problems

V. Acary, F. Cadoux, C. Lemaréchal, and J. Malick.
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Une généralisation de l’inégalité de Fenchel et ses applications aux lois constitutives.
Comptes Rendus de l’Académie des Sciences, t 314,srie II:125–129, 1992.

E.D. Dolan and J.J. Moré.
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