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Objectives & Motivations

Motivations

(a) External view (b) View-1. (c) View-2.

Figure: Schneider Electric C-60 circuit breaker mechanism.
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Objectives & Motivations

Motivations

Main motivations

I Analysis of the influence of the manufacturing tolerances on the functional
conditions of mechanisms.

I Monte-Carlo simulations to analyze the sensitivity

Means/Requirements

I Accurate modeling of rigid body dynamics with large rotations

I Modeling of clearances as frictional contact interfaces with gaps and restitution

I Avoid violation of constraints or penetrations if clearances are tight

I Efficient and robust numerical simulations to perform sensitivity analysis
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Newton–Euler equations with constraints

Frictional contact interfaces

Body A
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Figure: Contact local frame.
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Newton–Euler equations with constraints

Frictional contact interfaces

Signorini contact law at the position level

0 6 gN ⊥ rN > 0. (1)

Signorini contact law at the velocity level uN = ġN

0 6 uN ⊥ rN > 0, if gN = 0. (2)

Newton impact law contact

u+
N = −eru−N , if gN = 0 and u−N 6 0, (3)

er coefficient of restitution
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Newton–Euler equations with constraints

Frictional contact interfaces

Coulomb friction law

r ∈ K = {r ∈ IR3, ||rT|| 6 µrN}. (4)
r = 0 if gN > 0 (no contact)
r = 0, uN > 0 if gN = 0 (take-off)
r ∈ K , u = 0 if gN = 0 (sticking)
r ∈ ∂K , uN = 0, ∃β > 0, uT = −βrT if gN = 0 (sliding)

(5)

Coulomb friction law as a second order cone complementarity

K∗ 3 û ⊥ r ∈ K . (6)

with the modified relative velocity û := u + µ‖uT‖N and the dual cone of K , i.e.,

K∗ = {z ∈ IR3 | zT x > 0 for all x ∈ K}
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Newton–Euler equations with constraints

Frictional contact interfaces

(a) 3D Coulomb’s friction cone, the
sliding case.

(b) Sliding case with modified velocity û, r ∈ ∂K .

Figure: Coulomb’s Friction law.

Newton–Euler equations with constraints – 7/48



Improvements of the Moreau–Jean time integration scheme for multi-body systems with clearances and large rotations

Newton–Euler equations with constraints

Newton-Euler formulation of the equation of motion

Coordinates

I xg ∈ IR3 the position of the center of mass

I vg = ẋg ∈ IR3 the velocity of the center of mass

I R ∈ SO+(3) the orientation of the body-fixed frame with respect to a given
inertial frame

I Ω ∈ IR3 the angular velocity of the body expressed in the body–fixed frame.

Relation between Ω and R

Ω̃ = R>Ṙ, (7)

or equivalently,
Ṙ = RΩ̃, (Lie-type ODE) (8)

where the matrix Ω̃ ∈ IR3×3 is given by Ω̃x = Ω× x for all x ∈ IR3.
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Newton–Euler equations with constraints

Newton-Euler formulation of the equation of motion

Newton–Euler equations of motion
m v̇g = f (t, xg, vg,R,Ω)

I Ω̇ + Ω× IΩ = M(t, xg, vg,R,Ω)
ẋg = vg

Ṙ = RΩ̃

(9)

where

I m > 0 is the mass,

I I ∈ IR3×3 is the matrix of moments of inertia around the center of mass and the
axis of the body–fixed frame

I f ( · ) ∈ IR3 and M( · ) ∈ IR3 are the total forces and torques applied to the body.
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Newton–Euler equations with constraints

Possible rotation parameterization

Matrix parametrization R ∈ SO(3)
It introduces numerous redundant parameters that are solved by

det(R) = 1 and R−1 = R>

Unit quaternion parametrization p ∈ IH1

Quaternion parametrization p ∈ IH (isomorphic to IR4) with only one redundant
parameter solved by

‖p‖ = 1

Representation in IR4: p = (p0, p1, p2, p3) ‖p‖2 = p2
o + p2

1 + p2
2 + p2

3

Representation in IR × IR3 p = (p0,
#»p )

Quaternion product.

p · q =

[
poqo − #»p #»q

p0
#»q + qo

#»p + #»p × #»q

]
. (10)

Adjoint quaternion
p? = (p0,− #»p ) (11)
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Newton–Euler equations with constraints

Possible rotation parameterization

Unit quaternion parametrization p ∈ IH1

For two vectors x ∈ IR3 and x ′ ∈ IR3, we define the quaternion px = (0, x) ∈ IHp and
px′ = (0, x ′) ∈ IHp . For a given unit quaternion p, the transformation

px′ = p · px · p? (12)

defines a rotation R such that x ′ = Rx given by

x ′ = (p2
0 − p> #»p )x + 2p0( #»p × x) + 2( #»p>x)p = Rx (13)

The rotation matrix may be computed as

R = Φ(p) =

 1− 2p2
2 − 2p2

3 2(p1p2 − p3p0) 2(p1p3 + p2p0)
2(p1p2 + p3p0) 1− 2p2

1 − 2p2
3 2(p2p3 − p1p0)

2(p1p3 − p2p0) 2(p2p3 + p1p0) 1− 2p2
1 − 2p2

2

 (14)
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Newton–Euler equations with constraints

Possible rotation parameterization

Compact form of the coordinates and the body twist
We denote by q the vector of coordinates of the position and the orientation of the
body, and by v the body twist:

q :=

[
xg

p

]
, v :=

[
vg

Ω

]
. (15)
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Newton–Euler equations with constraints

Possible rotation parameterization

Lie type ode in terms of quaternion
Matrix rotation Ṙ = RΩ̃
The time derivative of px′ = p · px · p? yields

ṗx′ (t) = 1
2
p(t) · (0,Ω(t)) = · Ω̂ (Lie-type ODE) (16)

where x̂ is the unit quaternion associated with a vector x ∈ IR3 such that x̂ = (0, x)
In matrix notation, we define ṗ = Ψ(p)Ω, the relation between v and the time
derivative of q is

q̇ =

[
ẋg

Ψ(p)ṗ

]
=

[
I 0
0 Ψ(p)

]
v := T (q)v (17)

with T (q) ∈ IR7×6.
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Newton–Euler equations with constraints

Compact form of the Newton-Euler equation

{
q̇ = T (q)v ,

Mv̇ = F (t, q, v)
(18)

where M ∈ IR6×6 is the total inertia matrix

M :=

(
mI3×3 0

0 I

)
, (19)

and F (t, q, v) ∈ IR6 collects all the forces and torques applied to the body

F (t, q, v) :=

(
f (t, xg, vg,R,Ω)

IΩ× Ω + M(t, xg, vg,R,Ω)

)
. (20)
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Newton–Euler equations with constraints

Joints and unilateral constraints

Bilateral constraints

I Coordinate level
hα(q) = 0, α ∈ E ⊂ IN, |E| = me , (21)

I Body twist level
Jαh (q) = ∇>q hα(q) the Jacobian matrix of hα(q) with respect to q.
The bilateral constraints at the velocity level can be obtained as:

0 = ḣα(q) = Jαh (q)q̇ = Jαh (q)T (q)v := Hα(q)v , α ∈ E. (22)

associated with a Lagrange multiplier λα, α ∈ E that generates a force applied to
the body

Hα,>(q)λα. (23)

Newton–Euler equations with constraints – 15/48



Improvements of the Moreau–Jean time integration scheme for multi-body systems with clearances and large rotations

Newton–Euler equations with constraints

Joints and unilateral constraints

Bilateral constraints

I Coordinate level
gαN (q) > 0, α ∈ I ⊂ IN, |I| = mi . (24)

I Body twist level
JαgN

(q) respectively for gαN (q) the Jacobian matrix of gαN (q) with respect to q.

0 6 ġαN (q) = JαgN
(q)q̇ = JαgN

(q)T (q)v , if gαN (q) = 0, α ∈ I. (25)

Remark
There is no reason that λαN = rαN and uαN = JαgN

(q)T (q)v if the function gn is not
chosen as the signed distance (the gap function)
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Newton–Euler equations with constraints

Joints and unilateral constraints

Unilateral constraints
Body twist level in terms of unknowns in the local frame

uαN := GαN (q)v , uαT := GαT (q)v , α ∈ I, (26)

or more compactly
uα := Gα(q)v (27)

associated with the total force generated by the contact α as

Gα,>(q)rα := Gα,>N (q)rαN + Gα,>T (q)rαT (28)
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Newton–Euler equations with constraints

Newton-Euler equations with constraints

Newton–Euler equations



q̇ = T (q)v ,

Mv̇ = F (t, q, v) + H>(q)λ+ G>(q)r ,

Hα(q)v = 0, λα α ∈ E
rα = 0, if gαN (q) > 0,

Kα,∗ 3 ûα⊥ rα ∈ Kα, if gαN (q) = 0,

uα,+N = −eαr uα,−N , if gαN (q) = 0 and uα,−N 6 0

 α ∈ I,
(29)
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Time–integration schemes

Index-2 stabilized formulation

Application of the Gear–Gupta–Leimkuhler (GGL) method to stabilize the constraints
at the coordinate level:

q̇ = T (q)v + J>h (q)µ+ J>gN
(q)τ ,

Mv̇ = F (t, q, v) + H>(q)λ+ G>(q)r ,

Hα(q)v = 0, λα

hα(q) = 0, µα

}
α ∈ E

rα = 0, if gαN (q) > 0,

Kα,∗ 3 ûα⊥ rα ∈ Kα, if gαN (q) = 0,

uα,+N = −eαr uα,−N , if gαN (q) = 0 and uα,−N 6 0,

0 6 gN(q) ⊥ τ > 0

 α ∈ I.
(30)

In a continuous time setting, we can show that the multipliers µ and τ vanish.
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Time–integration schemes

Principles of the Moreau–Jean scheme

I Reformulation of the dynamics in terms of differential measure.

I Second order sweeping process that includes the complementarity at the velocity
level with the Newton-impact law

I Main unknowns are the velocities and the impulses.
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Time–integration schemes

Principles of the Moreau–Jean scheme

Dynamics in terms of measures

{
q̇ = T (q)v + J>h (q)µ+ J>gN

(q)τ ,

Mdv = F (t, q, v)dt + H>(q)diλ + G>(q)dir ,

Second order sweeping process

diαr = 0, if gαN (q) > 0,

Kα,∗ 3 ûα,+ + eαr uα,−N N ⊥ diαr ∈ Kα, if gαN (q) = 0,

 α ∈ I.

(31)
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Time–integration schemes

Principles of the Moreau–Jean scheme

Main unknowns are the velocities and the impulses.
Integration over a time-interval (tk , tk+1] :∫

(tk ,tk+1]
Mdv = M(v+(tk+1)− v+(tk )) ≈ M(vk+1 − vk ) (32)

Üvk is a approximation of v+(tk )∫
(tk ,tk+1]

diλ ≈ Qk+1

∫
(tk ,tk+1]

dir ≈ Pk+1 (33)

ÜQk+1 and Pk+1 are direct approximations of the impulses over the time interval∫ tk+1

tk

J>h (q)µ(t)dt ≈ γk+1,

∫ tk+1

tk

J>gN
(q)τ(t)dt ≈ δk+1, (34)
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Time–integration schemes

Numerical integration scheme

Standard activation rule

Ik = {α ∈ I | gαN,k + γuαN,k 6 0} with γ ∈ [0,
1

2
] (35)

Direct GGL approach



qk+1 = qk + hT (qk+θ)vk+θ + J>h (qk+1)γk+1 + J>gN
(qk+1)δk+1,

M(vk+1 − vk )− hFk+θ = H>(qk+1)Qk+1 + G>(qk+1)Pk+1,

Hα(qk+1)vk+1 = 0

hα(qk+1) = 0

}
α ∈ E

Pαk+1 = 0, δαk+1 = 0,
}

α 6∈ Ik
Kα,∗ 3 ûαk+1 + eαr uα

N,kN ⊥ Pαk+1 ∈ Kα

gα
N,k+1 = 0, δαk+1, if Pα

N,k+1 > 0,

0 6 gα
N,k+1 ⊥ δ

α
k+1 > 0 otherwise

 α ∈ Ik .

(36)

The notation xk+θ = (1− θ)xk + θxk+1 is used for θ ∈ [0, 1].
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Time–integration schemes

Numerical integration scheme
The direct GGL approach yields spurious oscillations when a contact is closing.
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Figure: The cycling behavior for the bouncing ball h = 5.10−2
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Time–integration schemes

Numerical integration scheme
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Time–integration schemes

Numerical integration scheme

Energy Balance in Elastic case
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Figure: Energy in the elastic case (e = 1) for the bouncing ball. h = 5.10−2
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Time–integration schemes

Numerical integration scheme

A combined scheme with a projection step and an activation step
Projection step for a given index set of active constraints Iν .

qk+1 = qk + hT (qk+θ)vk+θ + J>h (qk+1)γk+1 + J>gN
(qk+1)δk+1,

M(vk+1 − vk )− hFk+θ = H>(qk+1)Qk+1 + G>(qk+1)Pk+1,

Hα(qk+1)vk+1 = 0

hα(qk+1) = 0

}
α ∈ E

Pαk+1 = 0, δαk+1 = 0,
}

α 6∈ Iν

Kα,∗ 3 ûαk+1 + eαr uα
N,kN ⊥ Pαk+1 ∈ Kα

gα
N,k+1 = 0, δαk+1, if Pα

N,k+1 > 0,

0 6 gα
N,k+1 ⊥ δ

α
k+1 > 0 otherwise

 α ∈ Iν .

(37)

Ü we obtain an estimation of the gap at step ν : gν
N,k+1
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Time–integration schemes

Numerical integration scheme

A combined scheme with a projection step and an activation step
Activation step:

I I0 = ∅
I Update of the active set of constraints:

Iν+1 = Iν ∪
{
α ∈ I | gα,ν

N,k+1 6 0
}
. (38)
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Time–integration schemes

Numerical integration scheme

Unit quaternion drift off effect
The integration rule of q̇ = T (q)v as

qk+1 = qk + hT (qk+θ)vk+θ (39)

or most precisely, for ṗ = Ψ(p)Ω as

pk+1 = pk + hΨ(qk+θ)Ωk+θ (40)

does not conserve the unit quaternion constraints.
A possible choice is to project onto the unit quaternion set IH1
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Time–integration schemes

Numerical integration scheme

Lie group integration scheme
The Lie ordinary differential equation

ṗ(t) = Ψ(p(t))Ω = p(t) · Ω̂, p(0) = p0 (41)

has an exact integration rule in IH1 given by

p(t) = p0 expq(tΩ̂) (42)

where expq is the exponential of a quaternion

expq(Ω̂) = (cos(
θ

2
), sin(

θ

2
)

Ω

θ
). (43)
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Time–integration schemes

Numerical integration scheme

Lie group integration scheme
Similarly [Simo and Wong, 1991, Brüls and Cardona, 2010], we proposed the
following integration rule

pk+1 = pk expq(hΩ̂k+θ) (44)

that ensures the conservation of the constraints ‖pk+1‖ = 1.

A further question is to extend this rule to the GGL approach.
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Application to the mechanism of a C60 circuit breaker

Application to a mechanism of a circuit breaker

(a) External view (b) View-1. (c) View-2.

Figure: Schneider Electric C-60 circuit breaker mechanism.
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Application to the mechanism of a C60 circuit breaker

Application to a mechanism of a circuit breaker

(a) ON (close) position. (b) OFF (trip or open) position.

Figure: Kinematic representations of the C-60 mechanism.
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Application to the mechanism of a C60 circuit breaker

Application to a mechanism of a circuit breaker

(a) Cylinder/Cylinder contact with axial
mis-alignment

(b) Cylinder/plane contact for contact with
flanges.

Figure: Two kinds of contacts in spatial revolute joint with clearances showing contact forces in
siconos.
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Application to the mechanism of a C60 circuit breaker

Application to a mechanism of a circuit breaker

Figure: Two kinds of contacts in spatial revolute joints with clearances
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Application to the mechanism of a C60 circuit breaker

Application to a mechanism of a circuit breaker

(a) Gap distance are computed between
the circular rings (in red) and the
journal cylinder (in blue)

(b) Axial mis-alignment (c) Polarization effect:
out-of-plane motion of the
mechanism due to
clearances.

Figure: Generic representation of a 3D revolute joint with clearance : cylinder/cylinder contact
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Application to the mechanism of a C60 circuit breaker

Application to a mechanism of a circuit breaker

Figure: Modelling of plane–plane contact between the bearing and the journal flanges or plane
stops.
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Application to the mechanism of a C60 circuit breaker

Application to a mechanism of a circuit breaker

(a) Plane surface and two semi-circular rings for
the first plane surface.

(b) Plane surface and two semi-circular rings for the
second plane surface.

Figure: Strategy to model the plane-plane contact.
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Application to the mechanism of a C60 circuit breaker

Application to a mechanism of a circuit breaker

Software

I Siconos is used for the time integration and for solving the discrete frictional
contact problem

I OpenCascade and PythonOCC are used for the CAD modeling and the
computation of contact distance and local frame at contact
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Experimental validation

Figure: Experimental test bench for contact/tripping force measurement.
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Experimental validation

(a) Experimental result. (b) Simulation result.

Figure: Contact force versus displacement.
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Experimental validation

(a) Experimental test (b) Virtual (numerical) test

Figure: Tripping force vs displacement: pin-side.
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Sensitivity Analysis

Functional conditions

Table: Output variables of the C-60 breaker.

FC - Name Description of the Functional Conditions (FC)

FC - 1 Contact Force (N)
FC - 2 Distance between Needle - Tripping bar pin position in X direction (mm)
FC - 3 Distance between Needle - Tripping bar pin position in Y direction (mm)
FC - 4 Distance between Needle - Lamage in X direction (mm)
FC - 5 Distance between Needle - Lamage in Y direction (mm)
FC - 6 Distance between Tripping bar - Plunger in X direction (mm)
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Sensitivity Analysis

Figure: Variables in the statistical analysis.
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Sensitivity Analysis

(a) Joints J1, . . . , J7, m̄ = 0.07 mm, σ = 0.0175.

Figure: Generated random numbers for the joints J1, J2, J3, J4, J5, J6 and J7.
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Sensitivity Analysis

Key numbers

I 30 850 simulations

I Avg. simulation time per simulation 810 s
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Sensitivity Analysis

(a) FC-1, m̄ = 13.66 N, σ = 0.239. (b) FC-2, m̄ = 10.724 mm, σ = 0.060.

Figure: Dispersion of the functional conditions: FC-1 and FC-2.

Application to the mechanism of a C60 circuit breaker – 47/48



Improvements of the Moreau–Jean time integration scheme for multi-body systems with clearances and large rotations

Conclusions

Thank you for your attention.
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