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An introduction to non-smooth dynamics and its applications in geomechanics. GEM Seminar V. Acary, Inria. – 1



Outline

Introduction & illustrations

One–sided and nonsmooth mechanics

Nonsmooth Dynamics

Principles of event–capturing time-stepping schemes

Applications in geomechanics and natural gravity-driven risks

Rock fall simulation and protective structure

MPM, plasticity and contact for debris flows

Fracture and CZM, and permafrost

Conclusions

An introduction to non-smooth dynamics and its applications in geomechanics. GEM Seminar V. Acary, Inria. – 2



INRIA Tripop Team

INRIA

French national institute for computer sciences, applied mathematics and

automatic control.

TRIPOP team-project

▶ Research object:

Modeling, Simulation and Control of Nonsmooth Dynamics.

▶ Current main application: natural gravitational risks in mountains :

▶ rockfall, rock slope stability, rock avalanche, landslides and debris flows

▶ design of protection structures
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Motivation for nonmooth dynamics

▶ Many mechanical systems involve abrupt changes:

▶ Mechanical systems with impacts (e.g., bouncing ball)

▶ Friction and stick-slip motion

▶ Plasticity, damage, fracture, …

▶ Traditional smooth differential equations are sometimes insufficient for

▶ modeling thresholds and inequalities

▶ numerical simulation of abrupt changes

▶ Nonsmooth dynamics provides a framework to

▶ model and analyze such systems.

▶ efficiently simulate such systems (robust and energy preserving

time–integration).
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Nonsmooth Dynamics

▶ nonsmooth = lack of

differentiability ( ̸∈ C1

),

▶ graphs with peaks, kinks, jumps.

▶ systems that evolves with time,

▶ branch of mechanics concerned

with the motion of objects.

Where is nonsmoothness?

▶ nonsmooth solutions in time and space:

• continuous, functions of bounded variations, measures and distributions.

▶ nonsmooth modeling of constitutive laws:

• set–valued mapping, inequality constraints, complementarity, impact laws,

• ODE with discontinuous r.h.s, differential inclusion, measure equation.
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A famous nonsmooth dynamical system: the bouncing ball

0 k

q

f

m
A compliant model with piecewise linear

stiffness

mq̈(t) = f (t)+λ = f (t)+
{

−kq(t) if q(t) < 0

0 if q(t) ⩾ 0

(1)
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A famous nonsmooth dynamical system: the bouncing ball

0

q

m

f

Rigid limit

If we let k → +∞ (rigid contact with restitution) we get{
mq̈(t) = f (t) + λ(t)

0 ⩽ q(t) ⊥ λ(t) ⩾ 0

(2)

Mandatory impact law (for discrete systems)

If q̇(t−) < 0 and q(t) = 0

q̇(t+) = −eq̇(t−) (3)

Therefore we pass from a piecewise linear system to a complementarity system

What do we gain doing so (compliance replaced by rigidity)?
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A famous nonsmooth dynamical system: the bouncing ball

Euler discretization of the compliant system (finite k)
vi+1 − vi

h
= kqi+1

qi+1 − qi
h

= vi
⇔

(
vi+1

qi+1

)
=

(
kh2 + 1 kh

h 1

)(
vi
qi

)
(4)

This problem is stiff because the eigenvalues γ1 and γ2 of

(
kh2 + 1 kh

h 1

)
satisfy

γ1

γ2

→ +∞ when k → +∞.

stiff integrators
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A famous nonsmooth dynamical system: the bouncing ball

Euler discretization (Moreau–Jean’s scheme) of the complementarity

system (infinite k) 
vi+1 − vi = hfi+1 + λi+1

0 ⩽ vi+1 + evi ⊥ λi+1 ⩾ 0

qi+1 = qi + hvi+1

(5)

which is nothing else but solving a simple Linear complementarity systems (LCP)

(or a quadratic program QP) at each step.
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One–sided and Nonsmooth Mechanics. Pioneering work of J.J. Moreau

Irreversible processes in thermodynamics as convex subdifferentials

▶ Formulation of one-sided and threshold phenomena:

▶ admissible (feasible) domains for the state, inequality constraints

▶ By duality (power), introduction of the force (multipliers):

▶ set-valued laws derived from a convex potential thanks to subgradients,

▶ potential with values in the completed real line IR+ ∪ {+∞},

▶ variational inequalities (normal cone inclusion) −F (z) ∈ INC(z),
▶ complementarity problems (C is a cone).

▶ Pseudo–potential of dissipation, −A ∈ ∂φ(ȧ), φ l.s.c. proper convex:

▶ principle of maximum dissipation for friction

▶ dual energy principles [Moreau, 1968, 1974].

▶ Gauss principle with unilateral constraints [Moreau, 1963, 1966]
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Unilateral contact and Coulomb friction

Body A

Body B

CA

N

T1

T2

CB

gN

gN

rN

▶ Signorini condition on the gap

0 ⩽ gN ⊥ rN ⩾ 0 ⇔ −rN ∈ NIR+
(gN)

▶ Signorini condition on the velocity{
0 ⩽ uN ⊥ rN ⩾ 0 if gN ⩽ 0

rN = 0 otherwise

⇔ −rN ∈ N TIR+
(g

N
)(uN)

▶ Impact Law (Newton Impact law), e coefficient of

restitution.

u+
N
= −e u−

N

▶ Moreau’s Impact Law{
0 ⩽ u+

N
+ eu−

N
⊥ ιN ⩾ 0 if gN ⩽ 0

ιN = 0 otherwise

⇕
−ιN ∈ N TIR+

(g
N
)(u

+
N
+ eu−

N
)
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Unilateral contact and Coulomb friction

Second order cone complementarity problem

De Saxcé [1992]; Acary and Brogliato [2008]; Acary et al. [2011, 2018].

▶ Coulomb friction K = {r ∈ IR3 | ∥rT∥ ⩽ µrn}
• nonassociated character (loss of monotony) [De Saxcé, 1992]

− û := −(u + µ∥uT∥n) ∈ NK (r)

• Second order cone complementarity condition
1

.

K⋆ ∋ û ⊥ r ∈ K

1

The set K⋆
is the dual cone to K defined by K⋆ = {u ∈ IR3 | r⊤u ⩾ 0, for all r ∈ K}.
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Unilateral contact and Coulomb friction

K

K
0 = −K

⋆

N

T

S

rrN

rN

−uT

−û−ûN = −µ∥uT∥

−û

Figure: Coulomb friction and modified relative velocity û. Sliding case.
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Other applications of unilateral and nonsmooth mechanics

Non exhaustive list of applications

▶ Cavitation in fluids [Moreau, 1964]

The pressure must be positive or higher than the vaporization pressure

▶ Plasticity and generalized standard materials [Moreau, 1974, 1976; Halphen

and Nguyen, 1975]

The stresses and strain hardening variables belong to a convex set

▶ Granular materials [Moreau, 1997, 2001]

▶ No tension materials and tension field modeling

▶ Fracture and damage (cohesive zone models)

▶ Non Newtonian Fluids

▶ Quasi-brittle and visco-plastic fluids (Bingham, damage, . . . )

▶ Multiphase fluid flows,

Modeling for the environment and natural hazards

▶ Debris flows, avalanches, block falls, threshold fluids, complex rheology

▶ Coastal swell protection, ice pack modeling, . . .

An introduction to non-smooth dynamics and its applications in geomechanics. GEM Seminar V. Acary, Inria. – 15



Nonsmooth mechanics

Motivated historically by theoretical mechanics, Convex analysis

is the appropriate tools for modeling and mathematical analysis

With mathematical programming and optimisation,

it paves the way to numerical efficient methods
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Nonsmooth Dynamics

nonsmooth? Késako?

Lack of mathematical regularity of functions.

Everything that is not everywhere differentiable

in Mechanics:

A non-smooth formulation of the laws of constitutive laws

(multi-valued function, inequalities, complementarity)

which can imply non-smooth solutions in time

(angular points, jumps, measures, distributions)

An introduction to non-smooth dynamics and its applications in geomechanics. GEM Seminar V. Acary, Inria. – 18



Nonsmooth Dynamics
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Nonsmooth Dynamics

Nonsmooth formulation based on differential inclusion

▶ Writing quasi-static or dynamic evolutions in the form of differential inclusion

(parallel research of J.J. Moreau, H. Brézis, M. Schatzman):

▶ Second order Moreau’s sweeping process

▶ Measure differential inclusion

▶ The state lies in the space of functions of bounded variations,,

and its derivatives are differential measures

▶ Impact laws as variational inequalities on differential measures
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Nonsmooth Dynamics

Efficient numerical methods

▶ Numerical time integration schemes of these formulations

▶ “Event-capturing time–stepping schemes”

▶ The discrete variables are the velocities and impulses

▶ Iterative solution methods at each time step of the non-smooth and

non-convex variational problem based on optimization and

mathematical programming techniques
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One sided constraint as an inclusion

Definition (Dynamics with perfect one-sided constraints )

[Moreau, 1988]] 

q̇ = v

M(q)
dv
dt

+ F (q, v) = r

−r ∈ NC(t)(q)

(6)

where r is the generalized reaction force.

▶ Extension of Lagrange equations with one-sided constraints

▶ Second order differential inclusion (relatice degree 2)

▶ The constraints are said to be perfect since their work is vanishes (Normality

law in coordinates.)
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Nonsmooth Lagrangian Dynamics

Fundamental assumptions

▶ The velocity v = q̇ is a function of bounded variations. The unknown of the

equation of motion is its right limit.

v+ = q̇+ (7)

▶ The coordinate q is an absolutely continuous function by the Lebesgue

fundamental Theorem of integration:

q(t) = q(t0) +
∫ t

t0

v+(t) dt (8)

▶ The acceleration (v̇ = q̈ in the usual sense) is a differential measure associated

with v such that

dv(]a, b]) =
∫
]a,b]

dv = v+(b)− v+(a) (9)
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Nonsmooth Lagrangian Dynamics

Definition (Nonsmooth Lagrangian Dynamics [Moreau, 1988])
M(q)dv + F (q, v+)dt = ι

v+ = q̇+
(10)

where ι is the generalized reaction measure

Advantages

▶ The formulation allows to take into account complex behaviors such as finite

accumulations in time (Zenon phenomenon)

▶ The formulation is useful for mathematical analysis

[Schatzman, 1973, 1978; Monteiro Marques, 1993; Ballard, 2000]

▶ The non-smooth dynamics contains both the impact equations and the

equations of continuous motion
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Impact Equations and equations of motion

Using the densities of the differential measures, with respect to the Lebesgue

measure and the discrete measures, we obtain

Définition (Impact equations at any time)

M(q)(v+ − v−)dν = pdν, avec p =
dι
dν

(11)

or, equivalently,
M(q(ti))(v

+(ti)− v−(ti)) = pi, (12)

Définition (Continuous dynamics almost-everywhere)

M(q)v̇dt + F (q, v)dt = fdt avec f =
dι
dt

(13)

or, equivalently,

M(q)v̇+ + F (q, v+) = f + [dt − a.e.] (14)
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Second order Moreau’s sweeping process

Définition (Moreau [1983, 1988])

The keystone of the formulation is the inclusion of measures at the velocity level:

M(q)dv + F (t, q, v+)dt = ι

v+ = q̇+

−ι ∈ NTC(q)(v
+)

(15)

Comments

An inclusion that involves measures

A single framework for non-smooth dynamics with inelastic impacts.

➜ Foundations of the numerical scheme of Moreau-Jean
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Principles of event–capturing schemes

1. A unified formulation 
−mdv + fdt = ι

q̇ = v+

0 ⩽ ι ⊥ v+ ⩾ 0 si q ⩽ 0

(16)

2. A consistent integration∫
]tk ,tk+1

]

mdv =

∫
]tk ,tk+1

]

mdv = m(v+(tk+1)− v+(tk)) ≈ m(vk+1 − vk) (17)

3. An consistent approximation with the measure differential inclusion-measure

0 ⩽ ι ⊥ v+ ⩾ 0 si q ⩽ 0

➜


pk+1 ≈

∫
]tk ,tk+1

]

ι

0 ⩽ pk+1 ⊥ vk+1 ⩾ 0 if q̃k ⩽ 0

(18)
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Moreau-Jean’s scheme

[Jean and Moreau, 1987; Moreau, 1988; Jean, 1999]

M(qk+θ)(vk+1 − vk)− hFk+θ = pk+1 = G(qk+θ)Pk+1,

qk+1 = qk + hvk+θ,

uk+1 = GT (qk+θ) vk+1

0 ⩽ uαk+1
+ eUα

k ⊥ Pα
k+1

⩾ 0 if ḡαk,γ ⩽ 0

Pα
k+1

= 0 otherwise

(19)

with

▶ G(q) = ∇qg(q)
▶ θ ∈ [0, 1]

▶ xk+θ = (1 − θ)xk+1 + θxk
▶ Fk+θ = F (tk+θ, qk+θ, vk+θ)

▶ ḡk,γ = gk + γhUk , , γ ⩾ 0

An optimization problem is solved at each time–step.
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Moreau-Jean’s scheme

Advantages

a consistent and stable scheme that is robust

that satisfies some invariants in discrete time:

equilibrium, energy, dissipation, . . .

Recent improvements

▶ Nonsmooth generalized–α schemes [Chen et al., 2013; Brüls et al., 2014]

▶ Time discontinuous Galerkin methods

[Schindler and Acary, 2013; Schindler et al., 2015]

▶ Stabilized index-2 formulation [Acary, 2014, 2013]

▶ Stabilized index-1 formulation [Brüls et al., 2018]

▶ Discrete variational integrators, geometric and symplectic properties

[Capobianco and R. Eugster, 2016; Capobianco and Eugster, 2018]
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Applications in geomechanics. Gravity driven hazards.

▶ Rock fall simulation and protective structures

▶ Granular flows for avalanches (snow, rock, debris)

▶ Nonassociated plasticity with contact and friction in Material Point Method

(MPM)

▶ Fracture and Cohesive Zone Model (CZM), and rock permafrost instability.
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Rock fall simulations and protective structures

Joint work with Franck Bourrier (INRAe)

▶ 3D rigid bodies simulation with arbitrary shapes.

▶ Improvement of contact laws including rolling friction

▶ Calibration on real case studies

▶ Statistical and sensitivity analysis.
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Rock fall simulations and protective structures

p. 7Titre de la présentation
Date / information / nom de l’auteur
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concept
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characteristics

▶ Collaboration with Géolithe and INRAe
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Smooth and nonsmoth DEM, validation of µ(I) model on obstacles with

FEM

Collaboration with T. Faug., F. Bourrier. M. Oziol PhD

Objectives

▶ Modeling of heavy, wet and dense avalanches by DEM

▶ Impact on obstacles (protective structures) as an continuum media by FEM

▶ Comparison of smooth DEM (Yade) and nonsmooth DEM (Siconos):

computation of stresses, strains, velocity profiles, porosity, forces on obstacles.

▶ Validation of µ(I), ϕ(I) model in the flow, near the obstacle (dead zone)

▶ 3D Simulation on real case obstacles.

▶ Learning of constitutive laws with TANNS (F. Masi)
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Plasticity in the generalized standard materials framework

Simplest framework: Small perturbation, associative plasticity and linear

hardening

▶ Small perturbations hypothesis with additive decomposition of the strain

ε = εe + εp. (20)

▶ Linear elasticity and hardening laws

σ = E : εe
and a = D ·α. (21)

▶ Generalized standard material (GSM) (associative plasticity)(
ε̇p

α̇

)
∈ NC

(
σ
a

)
. (22)

C(σ, a) a convex set of admissible stresses σ and hardening forces a
▶ Clausius-Duhem dissipation inequality is automatically satisfied

d = σ : ε̇p+a · α̇ ⩾ 0 if 0 ∈ C. (23)

▶ Extension to nonassociated materials with implicit standard material:

bipotential approach (G. de Saxcé et al.)
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Elasto-dynamics with plasticity, contact and impact.

A second order sweeping process

FEM or MPM discretization yields

v+ = q̇+ (velocity of bounded variations)

M(q)dv + F (q, v+)dt + B⊤σdt = ι (differential measure)

σ̇ = E(Bv − ε̇p) (elasticity)

ε̇p ∈ NC(σ) (plasticity)

−ι ∈ N TM(q)(v
+ + ev−) (impact and contact)

➞ Implicit monolithic solver based on optimisation
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MPM, plasticity and contact for debris flows

Louis Guillet PhD (F. Bourrier, O. Goury)

Objectives

▶ Simulation of landslides and debris flows (elasto-plastic fluids + rocks +

debris)

▶ Non-associative plasticity (Drucker–Prager, Mohr–Coulomb) with controlled

dilatency

▶ Contact, impact and Coulomb’s friction (non-associated)

▶ Transition from instability to flows

▶ Monolithic solver based on (non-monotone) variational inequalities and

complementarity problems: semi-smooth Newton methods, interior point

methods, first-order accelerated methods

▶ Existence, convergence, energy consistency
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MPM, plasticity and contact for debris flows

a) b)

d)c)

Figure: Cumulative plastic strains for an associated material (θ = ϕ) for different simulation

times: a) t = 0 s, b) t = 1.7 s, c) t = 3.3 s, d) t = 5 s.
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MPM, plasticity and contact for debris flows

a)

c) d)

b)

Figure: Cumulative plastic strains for a strongly non-associated material (θ = 0
◦) and for

different simulation times: a) t = 0 s, b) t = 1.7 s, c) t = 3.3 s, d) t = 5 s.
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Fracture. Extrinsic and intrinsic cohesive zone models

Joint work with N. Collins Craft and F. Bourrier.

An intrinsic CZM (a) and an extrinsic CZM (b)

uN

σ

uN

σ

δc

σc

(a)

δh δc

σc

(b)

▶ Intrinsic models : initial stiffness in the interface.

▶ σ is a function of uN

▶ difficulty to give a value to the initial stiffness

▶ modify the elasticity of the material prior to the crack

▶ the effect is worse with a lot of interfaces (FEM applications)

▶ need to use high initial stiffness value that implies numerical difficulties

(stiff ODE systems)
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Fracture. Extrinsic and intrinsic cohesive zone models

Joint work with N. Collins Craft and F. Bourrier.

An intrinsic CZM (a) and an extrinsic CZM (b)

uN

σ

uN

σ

δc

σc

(a)

δh δc

σc

(b)

▶ Extrinsic models : initially rigid, perfect bond, bilateral constraint.

▶ the model is set-valued (like unilateral contact)

▶ keep the original elasticity of the material.

▶ bilateral constraints rather penalty (no stiff ODE)
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Fracture. An extrinsic cohesive zone model

Free energy potential

Ψs(uN, uT, β) = βσcuN + βγσc|uT|︸ ︷︷ ︸
potential energy

+ wf (β)︸ ︷︷ ︸
fracture energy

+ I[0,1](β)︸ ︷︷ ︸
constraints on β

+ IIR+(uN)︸ ︷︷ ︸
unilateral contact

▶ w is the free energy released by the decohesion

▶ f (β) is a function that describes the “shape” of the cohesive law,

▶ γ is the ratio of critical traction in mode II to mode I

Remarks

▶ unilateral contact is contained in the model

▶ β is constrained to be [0, 1]

▶ the potential energy related to uN and uT is piece linear to avoid the

introduction of elasticity
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An extrinsic cohesive zone model

State laws, constitutive laws for reversible processes


−r r

N
∈ ∂u

N
Ψs(uN, uT, β) = βσc + ∂IIR+(uN),

−r r

T
∈ ∂u

T
Ψs(uN, uT, β) = βγσcsgn(uT),

−Ar ∈ ∂βΨs(uN, uT, β) = σc (uN + γ|uT|) + wf ′(β) + ∂I[0,1](β),

where A is the thermodynamic driving force associated with the cohesion state β.

▶ unilateral contact with cohesion

−(r r

N
+ βσc) ∈ ∂IIR+(uN) ⇐⇒ 0 ⩽ r r

N
+ βσc ⊥ uN ⩾ 0

▶ set-valued tangential cohesion

−r r

T
∈ βγσcsgn(uT)

▶ cohesion state law

−(Ar + σc (uN + γ|uT|) + wf ′(β)) ∈ ∂I[0,1](β)
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An extrinsic cohesive zone model

A simple triangle law as state cohesion law

f (β) = (β2 − 1), w =
σcδc

2

uN

βσc

δc

σc

w area under the curve, free energy earns by the system.
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An extrinsic cohesive zone model

uN

r r

N

−βσc

δc uT

r r

T

δc,T

−δc,T

βγσc

−βγσc
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An extrinsic cohesive zone model

Irreversible process (2D)

Φ(vN, vT, β̇) = IIR−(β̇)︸ ︷︷ ︸
fracture irreversibility

+µ(rN + βσc)|vT|︸ ︷︷ ︸
dissipation by friction

(24)

Comments

▶ the decohesion process is irreversible (β̇ ⩽ 0) but not dissipative and

rate-independent.

▶ the friction threshold accounts for the cohesion force,
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An extrinsic cohesive zone model

Irreversible process (2D). Constitutive laws

−r ir

N
= ∂v

N
Φ(vN, vT, β̇) = 0,

−r ir

T
∈ ∂v

T
Φ(vN, vT, β̇) = µ(rN + βσc)sgn(vT),

−Air ∈ ∂β̇Φ(vN, vT, β̇) = ∂IIR−(β̇).

vT

r ir

T

−µ(rN + βσc)

µ(rN + βσc)
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An extrinsic cohesive zone model

The net tangential behaviour assuming uT = ±vTt

uT

rT

−µ(rN + σc)

−µrN

µ(rN + σc)

µrN

Comments

The tangential depends on two separated terms: a cohesion forces that depends on

displacement and a frictional forces that depends on the velocity.
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Instability phenomena linked to warming in ice–filled permafrost rock

Rockfall at Mel de la Niva.

Evolène, Switzerland, Oc-

tober 18, 2015.

Chloé Gergely PhD. (F. Bourrier)

Objectives

▶ Run-out of the granular flows with fragmentation.

▶ Particle breakage modeling cohesive zone model(CZM) and with unilateral

contact and friction

▶ Characterize the shape and the volume of the “big blocks” after fragmentation

▶ understanding and quantifying the effect of temperature on the stability of

permafrost rock mass

▶ Extrinsic CZM models taking into account the effect of heat (and

temperature) on the mechanical properties of interface

▶ Coupling with heat equation in the rock mass

▶ Understanding whether other phenomena need to be added (freeze/thaw

cycle, water flow and porous media, . . . )
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Introduction & illustrations

One–sided and nonsmooth mechanics

Nonsmooth Dynamics

Principles of event–capturing time-stepping schemes

Applications in geomechanics and natural gravity-driven risks

Conclusions
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Conclusions

Nonsmooth dynamics a framework :

▶ to model one-sided and threshold effects,

▶ to give a rigorous mathematical setting prone to results, and

▶ to enable the design of powerful numerical tools,

with relevant application to gravity flows.

Thank you for your attention
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